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Abstract. The impact of current changes in technology, society, and the environment
demand innovative research approaches that can accurately capture the increasing com-
plexity of modern geographic data. To this end, this article provides an introduction to
the use and implementation of spatial network analysis for the study of systems where
geography matters. Presented as a computational notebook, the article offers practical,
hands-on learning resources in R, assuming no prior knowledge from readers. Using a
network of road links between African cities as case study, readers will be guided through
key concepts and applications of spatial network analysis. The article highlights the
relevance of network thinking in addressing contemporary geographic challenges.

1 Introduction

Sweeping transformations in technology, society and the environment are disrupting
the status quo, driving innovation and challenging our understanding of the world.
Among research fields, geography is significantly impacted by these changes due to
its all-encompassing nature (Hartshorne 1939). The increased availability of data, the
rise of Artificial Intelligence (AI), the improvement and deployment of urban sensors,
the urbanisation and counter-urbanisation trends, the global spread of COVID-19, the
evolving human mobility patterns, and the growing economic impact of natural disasters
and climate change are just a few of the pressing issues that analysts interested in the
study of geographic data are currently addressing.

Quantitative research concerning these new realities calls, more than ever, for ap-
proaches that embrace the interconnectedness and contextuality of the various elements
involved in driving change. For example, a process like urbanisation is not just about the
growth of urban populations but it also involves economic, social, and environmental di-
mensions and their interaction (Batty 2007, Bettencourt 2021). Similarly, climate change
extends far beyond the realm of weather, with impacts on ecosystems, communities,
financial markets and even politics (Lawrence et al. 2020). Responses to many of the
emerging disruptions are additionally characterised by having ill-defined or malleable goals
(e.g. achieving “sustainable urbanisation”), and by the presence of not only interdependent,
but sometimes conflicting elements (e.g. designing a pandemic response while ensuring
economic stability) (Miller et al. 2021). Therefore, the study of geographic data must
adopt holistic frameworks and methodologies that regard the current real-world issues
as far-reaching, wicked problems – as defined by (Rittel, Webber 1973) – embedded in
complex systems (Miller 2017).

Complex systems are often organised as networked sets of elements which are embedded
in space (Barthélemy 2011). These network structures, where space is relevant and where
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topology alone does not contain all the information, are ubiquitous in the study of
geographic data. Examples include transport networks (e.g. the subway network in a
city, the network of flight connections between airports, the street network); mobility
networks (e.g. the migration network between different countries, a network of commuting
flows between the neighbourhoods within an urban area) or social and contact networks
(e.g. the network of Facebook friends in different parts of the world). Therefore, we argue
that network analysis remains one of the most significant and persistent research areas
relating to the analysis of geographic data (Curtin 2007).

With roots in the natural sciences, the study of networks and complex systems explores
how interactions among the individual give rise to larger, macro-level structures (Flake
1998). At the same time, network analysis provides powerful tools to investigate micro-
level structures and properties, such as individual nodes and their local interactions, while
embedding them within the broader context of the system. In this way, network analysis
serves as a bridge between the “micro” and the “macro”, offering insights into how local
behaviours shape overarching patterns and vice versa.

Networks and complex systems thinking has traditionally focused on “extracting and
abstracting”, contrasting with the pre-disposition of geographers to “contextualise and
specify” (O’Sullivan, Manson 2015). As a result, the use of complex systems approaches in
geography and social sciences has faced criticism in the past for allegedly failing to capture
human-driven qualitative change or power-dynamics, and neglecting substantive domain
expertise (Uitermark, van Meeteren 2021, Franklin 2020). However, in recent times,
with the rise of technological and socioeconomic transformations, alongside increasing
data availability, there are numerous incentives to integrate complex systems approaches
into geography (Nelson et al. 2025). These approaches should move away from sterile,
often-critiqued conceptualisations of people and places, and instead, focus on data-driven
analyses that consider the heterogeneity and spatial context as key drivers of social
behaviours (Miller et al. 2021).

This article aims at providing an introduction of key concepts, definitions and ap-
plications of network analysis for the study of geographic data. Network analysis has a
theoretical foundation in graph theory and topology (Curtin 2007). Rather than focusing
on these foundational approaches to spatial networks, the focus here is on the practical
implementation for data analysis and modelling. The article takes the form of a computa-
tional notebook, inviting the reader to follow a hands-on approach through a series of
computational examples in R. These examples highlight the value of networks thinking in
geography and spatial analysis by presenting applications based on a real-world network
within a two-dimensional space.

The article is structured in the following way. The sections “Computational environ-
ment”, “Data” and “Basic conceptual intuition” provide background and instructions to
set up the necessary software to run the computational notebook. The body of the article
can be found in the “Application” section, which includes learning resources for network
construction and visualisation, network metrics, community detection and analysis of
network robustness. Finally, there is a “Conclusion” section synthesising the learning
outcomes.

2 Computational environment

This computational notebook is designed for reproducibility, so you can obtain consistent
results by downloading and re-running without any modifications. To this end, it is
necessary to ensure that the machine used to run the code has all the relevant software
packages and versions installed.

The notebook is written using Quarto, an open-source, R Markdown-like publishing
system which supports the integration of text, code and visualisations within a single
document. Quarto documents are saved with the extension .qmd but can also be rendered
in various formats, such as PDF, HTML, Microsoft Word or others. To use Quarto,
you need to install the appropriate distribution for your operating system, which can
be downloaded from the Quarto website. For the creation of this notebook, the version
1.5.55 (Mac OS) was used.
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You will need to use RStudio, which requires R to be installed, to open and work on
the Quarto notebook. R can be downloaded from the Comprehensive R Archive Network
(CRAN), where installers for various operating systems, including Windows, macOS, and
Linux, are provided. This notebook has been created using the R 4.4.1 version for MacOS,
Apple Silicon (M1-3). Once R is installed, it is possible to proceed with the installation
of RStudio, which can be downloaded from the Posit website. This notebook was created
using the macOS 12+ version of RStudio.

You can open the notebook saved as a .qmd file on RStudio once you have installed
Quarto, R, and RStudio. You will need to install a recent distribution of TeX such as
TinyTeX to properly render the .qmd file into a .pdf. This can be done by running the
following command on the terminal: quarto install tinytex. You will then need to add
the Quarto template used to create this manuscript for REGION. Instructions on how
to do this can be found in the README section of the following GitHub repository:
https://github.com/region-ersa/REGION/. Furthermore, to run the code included in the
notebook, you will need to install some R extensions, known as packages, that will be
useful for the applications explored here. The packages, as well as the specific version
that was used during the creation of the notebook, that you need to install are:

Package Version Description
igraph 2.0.3 for network manipulation and analysis
sf 1.0.16 to handle spatial data
tidyverse 2.0.0 for data manipulation and visualisation
ggplot2 3.5.1 for data visualisation
ggraph-2 .2.1 for graph visualisation
patchwork 1.2.0 to arrange plots
tidygraph 1.3.1 for tidy data handling with graphs
RColorBrewer 1.1.3 for color palettes
rnaturalearth 1.0.1 for natural earth map data
ggspatial 1.1.9 for geospatial visualisation

Open RStudio to install any package. Write the following command on the console
window, normally situated at the bottom left: install.packages("name of package").
Make sure you replace “name of package” by the actual name of the package that you
want to install e.g. install.packages("tidyverse"). Then, press enter and repeat this
process until you have installed all the packages in the list.

Once the packages are installed, you will need to load them in order to be able to use
them. This can be done by running the code below:

[1]: # Load necessary libraries
library(igraph) # Network analysis
library(sf) # Handling spatial data (simple features)
library(tidyverse) # Data manipulation and visualisation
library(ggplot2) # Creating graphics and visualisations
library(ggraph) # Visualising network data with ggplot2
library(patchwork) # Combining multiple ggplot2 plots
library(tidygraph) # Graph manipulation in a tidy data framework
library(RColorBrewer) # Creating color palettes for visualisations
library(rnaturalearth) # Accessing natural Earth geospatial data
library(ggspatial) # Adding spatial context to ggplot2 maps

[2]: # Disable scientific notation globally for figures
options(scipen = 999)

3 Data

Here, you get to work with a network which represents the main cities in the African
continent and the road connections between them. The nodes of this network are the cities
with a population greater than 100,000 people, obtained from (Moriconi-Ebrard et al.
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2016). The edges represent the road infrastructure linking pairs of cities, sourced from
OpenStreetMap (OpenStreetMap Contributors 2023, Maier 2014), and include primary
roads, highways, and trunk roads. Each edge is associated with a distance measure based
on the length of the roads that it represents. Additionally, to accurately represent the
road infrastructure, the network also includes nodes representing road intersections, which
are necessary for describing the connectivity between cities. These nodes are labelled as
“transport nodes” and help define possible routes between cities. Some transport nodes
correspond to towns with less than 100,000 inhabitants, so they are labelled as attached
to nearby cities. The urban network enables us to consider the existing roads in the
continent and measure the travelling distance rather than the physical distance between
cities. The constructed network is formed by 7,361 nodes (2,162 cities and 5,199 transport
nodes) and 9,159 edges. More details on how the network was built can be found in
(Prieto-Curiel et al. 2022).

The network is connected, meaning that it is possible to find a sequence of nodes and
existing roads linking any pair of cities, and therefore, it is also possible to find the shortest
road distance between any two cities and define it as the network distance. The network
consists of 361,000 km of road infrastructure and connects 461 million people living in
African cities, representing roughly 39% of the continent’s population (Prieto Curiel et al.
2022).

4 Basic conceptual intuition

Networks are used as a tool to conceptualise real-life systems where a group of items
displays connections between themselves, such as the friendships among members of
a school year group, hyperlinks between websites, or what-eats-what relationships in
an ecological community. A network (or a graph) consists of nodes (or vertices) and
edges (or links), where the latter represent the connections between the nodes (Aldous,
Wilson 2000). Networks generally represent the arrangement of connections between
pairs of nodes, also known as the topological information of the systems they represent.
Networks are considered spatial when their topology alone does not provide all the
necessary information. In such networks, the nodes are located in a space equipped with
a metric (Barthélemy 2011), typically Euclidean distance in two-dimensional space. The
probability of a link between two nodes generally decreases as the distance between them
increases. An important type of spatial networks are planar networks, where edges can
be drawn without crossing each other in a two-dimensional plane. However, they can also
be non-planar, such as an airline passenger network that connects airports through direct
flights where the flight connections often overlap geographically (Barthelemy 2018).

The geometry of the nodes is fundamental in spatial networks. While nodes may
have explicit geographic coordinates, edges may not always directly reflect physical
distances or real-world geometry. For example, the edges do not account for the actual
routes or distances travelled in the case of straight-line connections between cities in a
transportation network. However, the spatial arrangement of nodes still plays a significant
role in the structure of the network.

The analysis of spatial networks is therefore an essential tool for studying patterns in
geographic data. Spatial networks are found in a variety of contexts, such as transport links
between subway stations (Cabrera-Arnau et al. 2023), flight connections between airports
(Guimerà, Amaral 2004), neighbouring relationships between geographical locations
(Anselin 1988), street networks in cities (Barthelemy, Boeing 2024) or road networks
connecting cities (Prieto Curiel et al. 2022, Strano et al. 2017), as is the case of the
application that we demonstrate in this article.

5 Application

You will now learn how to implement spatial network analysis for the study of geographic
data. As described in the section Data, all the steps in the implementation will be
exemplified with a network of African roads.
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5.1 Creating a network from a data frame

The data that specifies the nodes and edges of the African road network is stored in two
csv files, one for nodes and one for edges. This data can be loaded in two data frames:

[3]: # Define URLs for nodes and edges CSV files
url_nodes <- paste0(

"https://github.com/CrmnCA/spatial-networks-region-data/",
"raw/main/data/AfricaNetworkNodes.csv"

)

url_edges <- paste0(
"https://github.com/CrmnCA/spatial-networks-region-data/",
"raw/main/data/AfricaNetworkEdges.csv"

)

# Read the CSV file containing network nodes data from the URL
df_nodes <- read.csv(url_nodes)

# Read the CSV file containing network edges data from the URL
df_edges <- read.csv(url_edges)

To provide a clearer understanding of the data structure, here are the first few rows
of each data frame:

[4]: # Display the first few rows of the nodes data frame
head(df_nodes)

[4]: Agglomeration_ID agglosName x y Pop2015 ISO3 Region
1 2320 Cairo 31.324 30.130 22995802 EGY North
2 5199 Lagos 3.316 6.668 11847635 NGA West
3 7098 Onitsha 6.928 5.815 8530514 NGA West
4 4220 Johannesburg 28.016 -26.050 8314220 ZAF South
5 4858 Kinshasa 15.293 -4.408 7270000 COD Central
6 5331 Luanda 13.385 -8.924 6979211 AGO Central

The df_nodes data frame specifies the properties of nodes in the network, includ-
ing a unique ID for each node (Agglomeration_ID) and attributes such as geographic
coordinates (x and y) or population size (Pop2015).

[5]: # Display the first few rows of the edges data frame
head(df_edges)

[5]: from to l h time timeU timeUCB border
1 8211 2333 4.2943815 motorway 2.576629 80.44702 80.44702 0
2 8211 1000559 1.7716116 motorway 1.062967 15.14826 15.14826 0
3 8211 1000567 5.4142666 motorway 3.248560 17.33386 17.33386 0
4 8211 5425 0.7988003 primary 1.198201 21.55530 21.55530 0
5 8211 1054396 50.6469094 primary 75.970364 90.05566 90.05566 0
6 8211 8208 8.2435851 primary 12.365378 36.19194 36.19194 0

The df_edges data frame defines the connections between nodes. Each row contains
a pair of nodes (i.e., “from” and “to”) that are linked by an edge, along with attributes
associated with the edge, such as timeUCB for travel time. Due to excessive computational
costs to calculate these values within the computational notebook, it is important to note
that the distances and travel times for each edge have been precomputed and stored in
df_edges.

You can create a network as an igraph object using these data frames. Specifically,
this network will be undirected (directed = FALSE), meaning the edges have no direction
and the connection between two nodes is bidirectional. In other words, you can travel
from A to B or from B to A without any directionality being implied if there is an edge
between nodes A and B.
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[6]: # Create a network 'g' from data frames 'df_edges' and 'df_nodes'
g <- graph_from_data_frame(

d = df_edges,
vertices = df_nodes,
directed = FALSE

)

When printed, the structure of an igraph object provides a summary of the network,
including the number of nodes (vertices), edges, and key attributes. For example, printing
the g object yields:

[7]: g

[7]: IGRAPH 354be48 UN-- 7361 9159 --
+ attr: name (v/c), agglosName (v/c), x (v/n), y (v/n), Pop2015 (v/n),
| ISO3 (v/c), Region (v/c), l (e/n), h (e/c), time (e/n), timeU (e/n),
| timeUCB (e/n), border (e/n)
+ edges from 354be48 (vertex names):
[1] 2333--8211 8211--1000559 8211--1000567 8211--5425 8211--1054396
[6] 8211--8208 8211--1055432 3467--1001315 3467--4936 3467--1296977

[11] 2333--1000607 2333--1001157 2333--1011439 2333--1027090 2333--1068481
[16] 2333--1116973 2333--3833 7356--6261 7356--1000307 7356--1000311
[21] 7356--1000863 7356--1041480 7356--1134459 6261--5163 7254--1000789
[26] 7254--1067779 2938--5889 2938--1032852 2938--1055190 2938--1055917
+ ... omitted several edges

UN– indicates that the graph is undirected, with 7,361 nodes and 9,159 edges. The
graph also includes vertex attributes (name, agglosName, x, y, etc.) and edge attributes
(l, h, time, timeU, etc.).

You can examine the attributes of the nodes in the network, which are automatically
derived from the column names in the df_nodes data frame. These attributes provide
additional information about the nodes and are an essential part of working with igraph
objects:

[8]: # Retrieve the attribute names associated with nodes in the 'g' network
vertex_attr_names(g)

[8]: [1] "name" "agglosName" "x" "y" "Pop2015"
[6] "ISO3" "Region"

Specifically, name is the ID of each node in the network, agglosName is the name of
the city represented by the node and it is set to road if the node is a transport node.
x and y represent the coordinates of each node, Pop2015 is the population of the city
nodes, ISO3 is the code for the country that each node is situated in, Region represents
the region within the African continent that each node is situated in, and Between and
degree represent the betweenness centrality and the degree of each node in the network,
which you will also compute below.

You can look particularly at the first few values of any node attribute, for example
Pop2015:

[9]: # Retrieve the first few node names from the 'g' network
head(V(g)$Pop2015)

[9]: [1] 22995802 11847635 8530514 8314220 7270000 6979211

You can also obtain the names of the edge attributes, which are taken from the
columns in the df_edges data frame:

[10]: # Retrieve the attribute names associated with edges in the 'g' network
edge_attr_names(g)

[10]: [1] "l" "h" "time" "timeU" "timeUCB" "border"
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where l represents the length in kilometres by road segment and it considers curves,
h is the type of edge (primary, highway, etc.), time is the estimated minutes to travel
through the edge, considering different speeds for distinct types of road, timeU is also the
estimated minutes to travel through the edge, but allowing extra time if the ends of the
edge are urban nodes, timeUCB allows further extra time for edges that cross a border and
border is a binary variable taking value 1 if an edge crosses a border and 0 otherwise.

For further reading on igraph and related network analysis tools in R, Kolaczyk,
Csárdi (2014) offers a detailed introduction to igraph functionalities.

5.2 Visualising the African road network as a spatial network

The most basic network visualisation can be achieved with the plot function from igraph.
While the arguments of this function allow for some degree of customisation, the ggraph
library is integrated with ggplot2, a powerful and flexible tool for the creation of graphics
which provides advanced control over aesthetics, layering, and themes.

We will load the shapes of the African countries as a spatial feature object, with the
ne_download function before creating the visualization. This will be used as a basemap.

[11]: # Download world map data with specified parameters
world <- ne_download(

scale = "small",
category = "cultural",
type = "admin_0_countries",
returnclass = "sf"

)

# Extract unique country ISO3 codes from `df_nodes` to match the network
target_countries <- unique(df_nodes$ISO3)

# Subset the world map data to include only the target countries
world_subset <- world[world$SOV_A3 %in% target_countries, ]

We will also need to set the position of the nodes by specifying their layout:

[12]: custom_layout <- data.frame(
name = df_nodes$agglosName, # Node names from the graph
x = df_nodes$x, # Custom x-coordinates
y = df_nodes$y # Custom y-coordinates

)

Furthermore, the node size can be set to vary according to the population of the cities
that they represent. City population sizes vary over several orders of magnitude, so rather
than making the size of the nodes proportional to the population size, it is better to apply
a scaling function to reduce the disparity in sizes:

[13]: # Calculate and assign a 'size' attribute to nodes in the 'g' network
# Size is determined based on the population data of each node
V(g)$size <- 0.1 * (V(g)$Pop2015 / 80000)ˆ3

Now, with a few modifications to the default plot in order to improve the appearance,
including setting the size of nodes as a function of the population, the network is ready
to be plotted.

[14]: ggraph(as_tbl_graph(g), custom_layout) + # Basic graph plot
geom_edge_link(

color = "gray20",
alpha = 0.9,
aes(width = E(g)$l * 0.1) # Custom edges

) +
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Figure 1: Visualisation of the African road network.

scale_edge_width(range = c(.1, 0.7)) + # Scale edge size
geom_node_point(

aes(color = "red", alpha = 0.8, size = V(g)$size) # Custom nodes
) +
scale_size_continuous(range = c(.3, 4)) + # Scale node size
scale_color_identity() + # Scale node color
theme(

legend.position = "none",
panel.background = element_rect(fill = NA, colour = NA)

) +
geom_sf(

data = world_subset,
fill = NA,
color = "gray80" # Basic map plot

)

[14]: Output in Figure 1.

As an exercise, you may want to try to plot the default visualisation by simply running
plot(g). This demonstrates how simple modifications to the default plot can make a
significant difference in the appearance of the outcome.

5.3 Network metrics

Network metrics are useful to obtain measurable insights into the network structure. They
are also valuable as a way to characterise the network so that it can be compared to other
networks.

5.3.1 Density

The density of a network refers to the proportion of existing edges over all possible edges.
In a network with n nodes, the total number of possible edges is n × (n − 1)/2. A density
equal to 1 corresponds to a situation where n × (n − 1)/2 edges are present. A network
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with no edges at all would have density equal to 0. We can obtain the density of the
African road network by running the following code:

[15]: # Calculate edge density (excluding loops)
dens <- edge_density(g, loops = FALSE)
dens

[15]: [1] 0.0003381142

The edge density for the African road network is approximately 0.00034, giving an
indication that the network is quite sparse, since out of all possible edges, only 0.034%
are present.

Beyond suggesting limited connectivity, low edge density also translates into challenges
in transportation infrastructure, particularly in regions where road networks are sparse
and fragmented due to geographical, economic, and historical factors. From an economic
standpoint, low network density can hinder economic integration and regional trade by
limiting connections between key locations (Linard et al. 2012). Improving connectivity
in such sparse networks can reduce transportation costs, improve access to markets,
and create greater economic opportunities, highlighting the importance of road network
density for fostering economic development (Prieto Curiel et al. 2022).

5.3.2 Reciprocity

The reciprocity in a directed network is the proportion of reciprocated connections between
nodes (i.e. number of pairs of nodes with edges in both directions) from all the existing
edges.

[16]: # Calculate the reciprocity of the edges in the 'g' network
reciprocity(g)

[16]: [1] 1

Every edge is inherently bidirectional in an undirected graph, meaning that there is
always a corresponding edge from B to A if there is an edge between node A and node B.
Therefore, the reciprocity of an undirected graph is naturally 1, as all connections are
reciprocated by definition.

5.3.3 Distances

A path in a network between node A and node B is a sequence of edges joining distinct
nodes, starting at node A and ending at node B. Each node in the path is visited only
once. In the case of a directed path, all edges must align with the specified direction,
ensuring the path follows the network’s directional flow.

The length of a path between nodes A and B is generally defined as the number of
edges forming this path. The shortest path is the minimum count of edges present to
travel from A to B. The path length can be also be defined in alternative ways. For
example, the path length can be defined as the sum of the weights of the edges forming a
path if the edges are weighted.

We can use the function shortest_paths() to find the shortest path between a
given pair of nodes, taking into account the geographic road length associated with the
edges. For example, between Cairo and Lagos, we can apply shortest_paths(), setting
weights to df_edges$l, and store the output in a dataframe called df_shortest_path.

[17]: # Calculate the shortest path between "Cairo" and "Lagos"
# Edge length is used as weight
df_shortest_path <- shortest_paths(

g,
from = V(g)$agglosName == "Cairo",
to = V(g)$agglosName == "Lagos",
predecessors = FALSE,
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weights = df_edges$l,
output = "both"

)

In this dataframe, the field epath stores the edges of the shortest path as a one-element
list. We can extract the values of this list as the edge IDs, which we then use to compute
the geographic road length associated with the shortest path between the two network
nodes.

[18]: # Get the edge path indices from 'df_shortest_path'
idx <- df_shortest_path$epath[[1]]

length(idx)

[18]: [1] 143

[19]: # Get the lengths of edges along the path
lengths_epath <- edge_attr(g, "l", idx)

# Calculate the total length of the path
sum(lengths_epath)

[19]: [1] 6084.359

We find that the network length associated with the shortest path is 143, while the
geographic road length associated with this path is 6,084.359 km. This road distance,
derived from the network representation of the African road network, can be compared
with distances provided by routing services. For instance, Google Maps estimates the
road transport distance between these two cities to be 6,431 km, which represents only a
5.7% difference from the value obtained here.”

The diameter of a network is the longest shortest path between any pair of nodes,
measured in terms of network distance. In the case of the African road network, we can
incorporate the geographic road length as edge weights. Using these weights, the diameter
reflects the greatest road length between any two nodes in the network.

[20]: # Calculate the diameter of the network
diameter(g, directed = FALSE, weights = df_edges$l)

[20]: [1] 11987.06

We obtain a diameter of 11,987.06 km, which roughly corresponds to the distance
between the northernmost and southernmost points of the African continent.

The mean distance is the average length of all shortest paths in the network. The
mean distance will always be smaller or equal than the diameter.

[21]: # Calculate the mean distance of the network
mean_distance(g, directed = FALSE, weights = NULL)

[21]: [1] 55.8602

[22]: # Calculate the mean distance of the network
mean_distance(g, directed = FALSE, weights = df_edges$l)

[22]: [1] 4878.73

Here we see that the average network distance between any given pair of nodes is 55.86
edges, while the geographic road distance between any given pair of nodes is 4,878.73 km.

5.3.4 Centrality

Centrality metrics assign scores to nodes, and sometimes edges, according to their position
within a network. These metrics can be used to identify the most influential or important
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nodes. In addition to measuring the prominence of individual nodes, centrality metrics
also provide insight into the overall structure of the network. We can understand how
local interactions at the node level contribute to global patterns and behaviours within
the network by examining the distribution of centrality scores. Additionally, the degree
distribution can reveal whether a network is highly centralised, with a few nodes having
disproportionately high centrality scores, or whether it is more balanced, with nodes
having similar centrality scores. This link between micro-level node properties and
the broader macro-level structure highlights the role of network analysis in connecting
individual node dynamics with the overall system.

5.3.4.1 Degree The degree of a node is one of the simplest and most fundamental
measures of centrality in a network. It is defined as the number of edges connected to the
node. In directed networks, the degree can be further divided into the in-degree, which
counts the number of edges directed towards a node, and the out-degree, which counts
the number of edges originating from it. The degree() function enables the calculation
of these measures for one or more nodes in a network. Users can specify whether they
are interested in the total degree (combining in- and out-degrees), the in-degree, or the
out-degree, depending on the focus of their analysis.

We can compute the degree of each node with the degree function since the African
road network is undirected.

[23]: # Compute degree of the nodes given by v belonging to network g
deg <- degree(g, v = V(g))

We produce a histogram to visualise the results.

[24]: # Produce a histogram showing frequency of nodes with certain degree
hist(deg,

breaks = 50,
main = "Distribution of degree",
xlab = "Degree",
ylab = "Frequency")

[24]: Output in Figure 2.

We observe that most nodes have degree 3. Nodes of degree 1 are terminal nodes.
Nodes of degree 2 are relatively less common than those of degree 1 and 3. This is likely
due to the method used to build the network, where all the transport nodes of degree 2 are
eliminated in order to simplify the network. It is relatively rare to find any nodes beyond
degree 4. From the histogram, we see the maximum degree observed in the network is 13.
Below, we obtain the name of the node with the maximum degree as well as the value of
the degree (13).

[25]: # Get names of nodes with the highest degree in the 'g' network
V(g)$agglosName[

degree(g) == max(degree(g))
]

[25]: [1] "Duduza Central"

[26]: # Get IDs of nodes with the highest degree in the 'g' network
highest_degree_node_names <- V(g)$name[

degree(g) == max(degree(g))
]
# Calculate the degree of nodes with the highest degree
degree(

g,
v = highest_degree_node_names

)
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Figure 2: Histogram of node degree.

[26]: 2896
13

The degree of 13 for Duduza means that it is directly connected to 13 neighbouring
nodes (cities or intersections) in the road network. This degree indicates that Duduza
serves as a relatively well-connected hub in the network.

We can also measure the weighted degree of a node. This is known as the strength of
a node and it is computed as the sum of edge weights linked to adjacent nodes. Both the
degree and strength are considered to be centrality metrics.

5.3.4.2 Closeness centrality Closeness centrality is a measure of the shortest path
between a node and all the other nodes, measured in terms of network distance. It
is calculated as the inverse of the average shortest path between a node and all other
nodes. The closer this value is to 1, the more central the node is in the network. A
value of 0 indicates an isolated node. You can use the closeness() function to compute
closeness centrality for a network. The calculation assumes unweighted edges when setting
weights = NULL, meaning the shortest paths are computed without accounting for edge
weights such as geographic road lengths. Below, we compute the closeness centrality for a
network using unweighted edges and visualise the results in a histogram to examine the
distribution.

[27]: # Calculate the closeness centrality for each node (unweighted edges)
close_centr <- closeness(g, weights = NULL)

# Create a histogram of closeness centrality
hist(close_centr,

breaks = 50,
main = "Distribution of closeness centrality",
xlab = "Closeness centrality",
ylab = "Frequency")

[27]: Output in Figure 3.

The resulting distribution is bimodal. This distribution reflects the effect of geography
in determining the overall connectivity structure of the African road network, whereby
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Figure 3: Histogram of unweighted closeness centrality.

the Sahara desert practically separates the network into two groups of nodes. Nodes
within each of the groups, corresponding to cities either North or South of the desert,
are much closer to each other than to the nodes belonging to the other group. Notably,
the closeness centrality values are very low. This is due to the sparsity of the network,
as closeness centrality is inversely related to the shortest path distances between nodes.
Many nodes are far apart in a sparse network, resulting in very small closeness centrality
values.

Closeness centrality can also be computed using weighted edges. In this case, geo-
graphic road length can be used as a weight to measure the physical proximity of each
node to all other nodes in the network. The resulting distribution can be visualised using
a histogram.

[28]: # Calculate the closeness centrality for each node (weighted edges)
close_centr_weight <- closeness(g, weights = df_edges$l)

# Create a histogram of closeness centrality
hist(close_centr_weight,

breaks = 50,
main = "Distribution of weighted closeness centrality",
xlab = "Closeness centrality (weighted)",
ylab = "Frequency")

[28]: Output in Figure 4.

Notably, the shape of the distribution changes when considering weighted or unweighted
edges, demonstrating the importance of this choice in the outcome.

5.3.4.3 Betwenness centrality Similarly, betweenness centrality is a measure of the
number of shortest paths going through a node. High values of betweenness centrality
indicate that the corresponding nodes play an important role in the overall connectivity of
the network. Betweenness can also be computed for edges. We compute the betweenness
centrality for all nodes using the function betweeness() and represent it as a histogram.
We do this using unweighted edges, so the computation of betweenness considers only
network distances but not geogrpahic distances.
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Distribution of weighted closeness centrality
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Figure 4: Histogram of weighted closeness centrality.

[29]: # Calculate the betweenness centrality for each node in the g network
between_centr <- betweenness(g, v = V(g), directed = FALSE,

weights = NULL)

# Create a histogram of betweenness centrality
hist(between_centr,

breaks = 50,
main = "Distribution of unweighted betweenness centrality",
xlab = "Betweenness centrality",
ylab = "Frequency")

[29]: Output in Figure 5.

The resulting distribution shows that most nodes have low values of betweenness
centrality and very few of them have large values. This means that there is a small
number of nodes that are crucial to ensure the existence of a shortest path between any
given pair of nodes. Without these key nodes, distances within the network could become
larger or even infinite, since the network could be broken into isolated components. The
emergence of such skewed distribution of the nodes betweenness centrality is due to the
specific geographic features of the African road network, where once again, connections
between cities North and South of the Sahara are facilitated by a small number of nodes
with high values of betweenness centrality.

5.3.5 Assortativity

The assortativity coefficient quantifies the tendency of nodes in a network to connect
to others with similar or dissimilar attributes. This metric can be calculated based on
any standard node property, such as degree, or a custom attribute (e.g., population
size). Mathematically, it is defined as the Pearson correlation coefficient of the specified
attribute between pairs of connected nodes, with values ranging from -1 to 1. Positive
assortativity indicates that nodes are more likely to connect with others having similar
attributes. Negative assortativity suggests that nodes tend to connect with others
having dissimilar attributes. In igraph, the assortativity() function computes the
assortativity coefficient for a specified attribute, while the assortativity_degree()
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Figure 5: Histogram of betweenness centrality.

function specifically evaluates the assortativity based on node degrees.
Below is the code for computing assortativity of a custom network attribute such as

the population size.

[30]: assortativity(
g,
V(g)$Pop2015,
directed = FALSE

)

[30]: [1] 0.0006432013

We use the assortativity_degree() function to compute the degree assortativity:

[31]: # Compute assortativity for degree
assortativity_degree(g, directed = FALSE)

[31]: [1] -9.080965e-05

Both assortativity() and assortativity_degree() return values close to zero,
indicating the absence of a strong tendency for nodes to connect either to similar or
dissimilar nodes.

To better understand how degree assortativity manifests in the network, we can
visualise the joint degree distribution, which shows the frequency of edges connecting
nodes with specific degree pairs:

[32]: # Extract node degrees
deg <- degree(g)

# Compute degree pairs for all edges
edge_degree_pairs <- t(sapply(E(g), function(e) {

ends(g, e, names = FALSE) %>%
sapply(function(v) deg[v])

}))
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# Convert to data frame for visualisation
joint_degree_df <- as.data.frame(edge_degree_pairs)
colnames(joint_degree_df) <- c("Degree_1", "Degree_2")

# Aggregate counts for each degree pair
joint_degree_counts <- joint_degree_df %>%

group_by(Degree_1, Degree_2) %>%
summarise(Frequency = n(), .groups = "drop")

# Heatmap visualisation
ggplot(joint_degree_counts, aes(x = Degree_1,

y = Degree_2,
fill = Frequency)) +

geom_tile(color = "white") +
scale_fill_gradientn(

colors = c("white", "lightblue", "blue", "darkblue"),
trans = "log10",
name = "Frequency") +

labs(title = "Joint Degree Distribution",
x = "Degree of Node 1",
y = "Degree of Node 2",
fill = "Log-scaled Frequency") +

theme_minimal() +
theme(panel.grid.major = element_blank(),

axis.text = element_text(size = 10),
axis.title = element_text(size = 12),
legend.text = element_text(size = 10),
legend.title = element_text(size = 12),
legend.position = "right") +

scale_x_continuous(
breaks = seq(1, max(joint_degree_counts$Degree_1), by = 1)

) +
scale_y_continuous(

breaks = seq(1, max(joint_degree_counts$Degree_2), by = 1)
) +
coord_cartesian(expand = FALSE) +
geom_hline(yintercept = seq(0.5, max(joint_degree_counts$Degree_2) +

0.5,by = 1),
color = "grey90", linetype = "solid") +

geom_vline(xintercept = seq(0.5, max(joint_degree_counts$Degree_1) +
0.5,by = 1),

color = "grey90", linetype = "solid")

[32]: Output in Figure 6.

Since the assortativity() and assortativity_degree() functions in igraph pro-
vide only the assortativity coefficient, a permutation test can be implemented to assess the
statistical significance of the assortativity coefficient. A permutation test compares the
observed assortativity coefficient to a distribution of coefficients from randomly shuffled
networks. This helps determine whether the observed value is significantly different from
what could arise by chance.

Here is how to compute a p-value using a permutation test:

[33]: # Observed degree assortativity coefficient
observed_assortativity <- assortativity_degree(g)

# Set seed for reproducibility
set.seed(123)
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Figure 6: Joint degree distribution

n_permutations <- 1000

# Rewire edges and compute assortativity for random networks
random_assortativities <- replicate(n_permutations, {

g_random <- rewire(g, keeping_degseq(niter = ecount(g) * 10))
assortativity_degree(g_random)

})

# Compute p-value by comparing observed and random assortativities
p_value <- mean(

abs(random_assortativities) >= abs(observed_assortativity)
)

p_value

[33]: [1] 0.997

We cannot reject, at the 95% confidence level, the hypothesis that the observed
assortativity could arise from a random configuration, since p-value ≥ 0.05. If p-value
was < 0.05, the observed assortativity would be unlikely to arise by chance, indicating
significant assortativity.

5.4 Community detection

A network displays community structure if the nodes can be grouped into sets such that
the nodes within each set are densely connected. For example, in the case of a social
network formed by the students in a classroom, we would expect that small groups of
friends form within the overall network, where relationships among members of a group
are stronger than to everyone else in the classroom. Detecting or searching communities
within in a network is a fundamental problem in network analysis, which has attracted
much attention in the past decades (Fortunato, Newman 2022). While there are different
methods to detect communities, below we review three of them which have been widely
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used and studied. These are walktrap (Pons, Latapy 2005), edge-betweenness (Girvan,
Newman 2002) and the Louvain method (Blondel et al. 2008).

Each of these methods emphasises different aspects of community structure, leading
to varying outcomes. The walktrap method is particularly suited to identifying small,
localised communities, making it useful in applications where fine-grained clusters are of
interest, such as detecting close-knit friend groups or tightly interconnected modules in
biological networks. The edge-betweenness method excels at uncovering well-separated
communities, especially in networks where connections between groups are sparse or
function as bottlenecks, such as departments in an organisation or transportation networks.
The Louvain methdod is best for capturing broader, hierarchical structures and is especially
effective for large-scale networks, where computational efficiency and an overview of the
global structure are key.

The community structures they produce can differ significantly because these methods
focus on different aspects of the network. For instance, walktrap or edge-betweenness
may reveal smaller, more detailed clusters, whereas Louvain often detects larger, coarser
groupings. It is important to choose a method thoughtfully based on the specific applica-
tion and research question because the detected community structure can directly shape
the interpretation of the network.

It is also worth noting that both walktrap and the Louvain method incorporate
random elements in their algorithms. As a result, running these methods on the same
network can yield slightly different community structures across iterations. To address this
variability, it is recommended to run the algorithms multiple times and assess the stability
of the detected communities using similarity metrics, such as the RAND index (Rand
1971), which quantify the agreement between different community partitions. Including
such assessments can improve confidence in the robustness of the results and ensure
reproducibility, especially for applications where stable community detection is relevant.

5.4.1 Walktrap

This algorithm relies on the concept of random walks on networks. Random walks
are sequences of nodes, chosen by following a randomly chosen path. The underlying
assumption of the walktrap method is that nodes encountered in a given random walk
are more likely to be part of the same community.

The algorithm starts by treating each node as its own community. Then, it performs
a series of short random walks on the network, where the length of these walks has to
be specified by the user. After performing the random walks, the algorithm calculates a
similarity measure between each pair of nodes. This measure is based on the idea that if
two nodes are often encountered together during random walks, they are likely part of the
same community. Nodes that have high similarity are merged into larger communities.
This merging process is hierarchical and agglomerative, starting with individual nodes and
progressively combining them. As communities are merged, the algorithm often aims to
maximise a measure called modularity, which quantifies the strength of the division of the
network into communities. High modularity indicates a good community structure, where
more edges fall within communities than between communities. The process continues
until the entire network is merged into a single community or until a stopping criterion,
like a modularity threshold is met. The algorithm may return a hierarchical structure
of communities depending on the implementation, allowing the user to explore different
levels of granularity in the community structure.

The walktrap method is implemented in R via the igraph function cluster_walktrap(),
with key parameters including the network of interest as an igraph object, the length of
the random walks, and a membership parameter, which is a boolean variable indicating
whether to calculate membership based on the highest modularity score (with True as
the default). Below, we apply the walktrap method to the African road network and save
the result in the variable g_wt:

[34]: # Perform walktrap clustering on the graph
g_wt <- cluster_walktrap(graph = g, steps = 3, membership = TRUE)
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We can get the membership of each node as well as the modularity score according
to the solution based on random walks of length 3. We save the results with the name
member_g_wt and modularity_g_wt:

[35]: # Get the membership of clusters in the walktrap clustering
member_g_wt <- membership(g_wt)

# Calculate the modularity of the walktrap clustering
modularity_g_wt <- modularity(g_wt)

We can plot the network based on the found communities. We will plot the network as
before, but color the nodes based on the communities found using the walktrap algorithm.
The plot is included in Figure 7:

[36]: plot_wt <- ggraph(as_tbl_graph(g), custom_layout) + # Basic graph plot
geom_edge_link(color = "gray20",

alpha = 0.9,
aes(width = E(g)$l * 0.1)) +

scale_edge_width(range = c(.1, 0.7)) + # Scale edge size
geom_node_point(aes(color = member_g_wt,

size = V(g)$size,
alpha = 0.8)) +

scale_size_continuous(range = c(.3, 4)) + # Scale node size
scale_color_identity() + # Scale node color
theme(legend.position = "none",

panel.background = element_rect(fill = NA, colour = NA)) +
geom_sf(data = world_subset,

fill = NA,
color = "gray80") +

ggtitle("Walktrap method")

5.4.2 Edge betweenness community detection

The edge-betweenness community detection method identifies communities within a
network by focusing on the edges that connect different communities. It works by
progressively removing edges that act as bridges between groups of nodes, from higher
to lower betweenness centrality. As high-betweenness edges are removed, the network
breaks down into smaller, more cohesive subgroups or communities. Though it can be
computationally intensive for large networks, this method is particularly useful for finding
natural divisions within a network.

The algorithm starts by computing the betweenness centrality for all edges in the
network. Edges with high betweenness are likely to be those that connect different
communities. Then, the edge with the highest betweenness centrality is removed from the
network. This step effectively “cuts” the bridge between communities. After removing the
edge, the betweenness centrality for the remaining edges is recomputed since the removal
of one edge may change the shortest paths in the network, affecting the betweenness
centrality of other edges. Edges with the highest betweenness centrality keep being
removed until all edges have been removed or until the network breaks down into the
desired number of communities.

The edge betweenness community detection method is implemented in R via the
igraph function cluster_edge_betweenness(). The key parameters are the network of
interest as an igraph object and a membership parameter, a boolean variable indicating
whether to calculate membership based on the highest modularity score (with True as
the default). Below, we apply the edge betweenness method to the African road network
and save the result in the variable g_eb:

[37]: # Perform edge betweenness clustering on the graph
g_eb <- cluster_edge_betweenness(graph = g, membership = TRUE)
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Once again, we can get the membership of each node according to the solution based
on edge betweenness. We save the results with the name member_g_eb:

[38]: # Get the membership of clusters in the edge betweenness clustering
member_g_eb <- membership(g_eb)

Then, we generate a plot of the results. We include the plot in Figure 7.

[39]: plot_eb <- ggraph(as_tbl_graph(g), custom_layout) + # Basic graph plot
geom_edge_link(color = "gray20",

alpha = 0.9,aes(width = E(g)$l * 0.1)) +
scale_edge_width(range = c(.1, 0.7)) + # Scale edge size
geom_node_point(aes(color = member_g_eb,

size = V(g)$size,
alpha = 0.8)) +

scale_size_continuous(range = c(.3, 4)) + # Scale node size
scale_color_identity() + # Scale node color
theme(legend.position = "none",

panel.background = element_rect(fill = NA, colour = NA)) +
geom_sf(data = world_subset,

fill = NA,color = "gray80") +
ggtitle("Edge betweenness\n clustering")

5.4.3 Louvain method

The Louvain method of multi-level clustering works by finding communities in such a
way that the modularity of the network is maximised. The algorithm works in two
phases: first, each node starts in its own community, and nodes are iteratively moved to
neighboring communities if the move increases modularity. This phase continues until
no further improvement is possible. In the second phase, the network is compressed by
treating each community found in the first phase as a single node, creating a new, smaller
network. The two phases are then repeated on this simplified network, thus refining the
community structure at each level. The process continues until modularity no longer
increases, resulting in a hierarchical clustering that reflects the community structure
within the network.

In R, the Louvain method is implemented via the cluster_louvain() function, where
the arguments are the graph and the resolution. Higher resolution values will yield a
larger number of smaller communities, while lower values will yield a smaller number of
larger communities.

[40]: # Perform Louvain clustering on the graph with a resolution of 1
g_mlc <- cluster_louvain(graph = g, resolution = 1)

We get the membership of each node according to the communities found by the Lou-
vain’s multi-level clustering method. The results are saved with the name member_g_mlc:

[41]: # Get the membership of clusters in the Louvain clustering
member_g_mlc <- membership(g_mlc)

We can then generate a plot of the results. The plot is included in Figure 7:

[42]: plot_mlc <- ggraph(as_tbl_graph(g), custom_layout) + # Basic graph plot
geom_edge_link(color = "gray20",

alpha = 0.9,
aes(width = E(g)$l * 0.1)) +

scale_edge_width(range = c(.1, 0.7)) + # Scale edge size
geom_node_point(aes(color = member_g_mlc,

size = V(g)$size,
alpha = 0.8)) +
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Figure 7: Outcomes of three community detection algorithms

scale_size_continuous(range = c(.3, 4)) + # Scale node size
scale_color_identity() + # Scale node color
theme(legend.position = "none",

panel.background = element_rect(fill = NA, colour = NA)) +
geom_sf(data = world_subset,

fill = NA,
color = "gray80") +

ggtitle("Louvain method")

In Figure 7, we visualise the results of the three community detection methods,
i.e. walktrap, edge betweenness and the Louvain method. The results show that nodes that
are geographically close and are part of densely connected clusters, generally belong to the
same community, regardless of the method used. There is some degree of correspondance
between the detected communities and the African countries.

[43]: # Combine the three community detection algorithm plots
plot_wt + plot_eb + plot_mlc

[43]: Output in Figure 7.

5.5 Analysing network robustness

Robustness is the ability of a network to maintain its basic functions in the presence of
node and link failures (Barabási, Pósfai 2016). Percolation theory, originally developed
in statistical physics to explore the relationship between microscopic and macroscopic
properties of a medium, is a widely used approach to studying network robustness. It
helps identify the conditions under which a network remains well-connected, ensuring that
most nodes can still interact or communicate effectively despite potential disruptions. A
well-connected network is characterised by the presence of a giant connected component
(GCC), which is a single, large cluster of interconnected nodes (Bollobás 2001). The
subset of network nodes within the GCC are reachable from each other, either directly or
indirectly, through paths. This means that, from any node node within the GCC, it is
possible to navigate through the network and eventually reach most of the other nodes.

The Molloy-Reed criterion is an important theoretical condition for the emergence of
the GCC in a network (Molloy, Reed 1995). This criterion provides a threshold based
on the degree distribution of nodes for a GCC to exist in a network. Specifically, the
Molloy-Reed criterion states, in absence of degree correlations (no degree assortativity),
that a GCC will emerge if the following is true: ⟨k2⟩ − 2⟨k⟩ > 0, where ⟨k⟩ is the average
degree and ⟨k2⟩〉 is the mean squared degree. The network is sufficiently connected to
support the formation of a GCC when the inequality holds. Conversely, the network will
fragment into small, isolated clusters when the inequality does not hold.
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It is crucial in real-world applications to ensure that networks have a GCC for
maintaining a system’s resilience. For example, the GCC ensures that most locations
remain accessible in transportation networks, while it enables the majority of devices or
users to exchange information in communication networks. Understanding the robustness
of these types of networks can therefore be valuable for improving regional resilience,
because it allows regions to better accommodate shocks and develop new growth paths
(Elekes et al. 2024).

More specifically, percolation analysis can be used to determine the threshold at which
a GCC emerges. For instance, percolation analysis can help calculate the minimum
number of edges that need to be added to keep the network in a well-connected state
given a network with a specific number of nodes. On the other hand, inverse percolation
(Barabási, Pósfai 2016) helps identify the point at which the removal of edges or nodes
leads to network fragmentation, breaking it into smaller, isolated clusters. The following
section focuses on inverse percolation, as the selected approach seeks to better understand
network robustness by assessing a network’s ability to remain well-connected when nodes
or edges are removed.

A full inverse percolation algorithm or process is typically run so that the value
of a percolation parameter that controls the removal of nodes or edges is updated in
each iteration, and nodes or edges are removed accordingly. Key robustness metrics are
measured in each iteration. One of the most used robustness metrics is the number of
nodes in the GCC after the removal of nodes or edges. This metric is known as the size
of the GCC. In many cases, we observe that abrupt changes occur in the size of the GCC
for certain values of the percolation parameter. This indicates that some sort of failure
occurs in the network that qualitatively changes its connectivity structure.

This type of analysis is demonstrated below. The percolation parameter of choice is
the time of travel through each edge, accounting for the presence of borders. This variable
is encoded by the timeUCB field in the df_edges data frame. Edges with timeUCB above
the value of the percolation parameter are removed from the network in each iteration of
the inverse percolation process. Furthermore, instead of considering the whole African
road network, a subset is considered, as this facilitates timely execution of the algorithm.
A subset formed by nodes and edges from the South region is used.

[44]: # Subset df_nodes for rows where Region is "South"
df_nodes_sub <- subset(df_nodes, Region == "South")

# Subset df_edges for rows where 'from' values are in Agglomeration_ID
df_edges_sub <- subset(df_edges,

from %in% df_nodes_sub$Agglomeration_ID)

# Subset df_edges_sub for rows where 'to' values are in Agglomeration_ID
df_edges_sub <- subset(df_edges_sub,

to %in% df_nodes_sub$Agglomeration_ID)

We can create an undirected graph from the redefined data frames of nodes and edges.

[45]: # Create an igraph graph 'g_sub' from 'df_edges_sub' and 'df_nodes_sub'
g_sub <- graph_from_data_frame(d = df_edges_sub,

vertices = df_nodes_sub,
directed = FALSE)

We can also visualise this subnetwork by running the code below. We will add the
outlines of the countries in the South region as a base layer for this plot to give more
geographical context to the above visualization. These are Botswana, Eswatini, Lesotho,
Namibia and South Africa.

[46]: # Define a vector of target countries
south_countries <- c("Botswana", "eSwatini", "Lesotho",

"Namibia", "South Africa")
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Figure 8: Visualisation of a road network in the South region of the African continent

# Subset the world map data to include only the target countries
world_south <- world[world$SOVEREIGNT %in% south_countries, ]

# Specify node layout
custom_layout <- data.frame(

name = df_nodes_sub$agglosName, # Node names from the graph
x = df_nodes_sub$x, # Custom x-coordinates
y = df_nodes_sub$y # Custom y-coordinates

)

[47]: # Create plot
ggraph(as_tbl_graph(g_sub),

custom_layout) + # basic graph plot
geom_edge_link(color = "gray20",

alpha = 0.7,
aes(width = E(g_sub)$l * 0.1)) + # custom edges

scale_edge_width(range = c(.1, 0.7)) + # scale edge size
geom_node_point(aes(color = "red",

size = V(g_sub)$size,
alpha = 80)) + # custom nodes

scale_size_continuous(range = c(.1, 6)) + # scale node size
scale_color_identity() + # scale node color
theme(legend.position = "none",

panel.background = element_rect(fill = NA, colour = NA)) +
geom_sf(data = world_south,

fill = NA,
color = "gray80") # basic map plot

[47]: Output in Figure 8.

5.5.1 The inverse percolation algorithm

The inverse percolation algorithm simulates the progressive breakdown of a network by
iteratively removing edges based on a percolation parameter (in this case, timeUCB). The
algorithm evaluates how the removal of edges affects the structure of the network at each
iteration. This process helps us understand how robust the network is and whether it
disintegrates as we vary the percolation threshold. We need to store key metrics about the
network at each step to analyse the results of this iterative process. We begin by creating
empty data structures to store information about the network during each iteration.
Specifically, we create four empty lists where we will record:
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• The value of the percolation parameter at the current iteration.
• The size of the largest connected component (GCC) in the network, which indicates

how much of the network remains connected.
• The total number of connected components in the network, which reflects how

fragmented the network becomes.
• The average time to travel between any pair of nodes, weighted by the edge attribute

timeUCB, to capture changes in the network connectivity.
These lists will each contain as many elements as iterations by the end of the inverse

percolation process, corresponding to the results for all iterations.

[48]: # Create empty vectors to store parameters, gccs, ncs, and times
parameters <- c()
gccs <- c()
ncs <- c()
times <- c()

We are now ready to perform the inverse percolation algorithm. The algorithm
proceeds iteratively, with each iteration representing a step where edges with timeUCB
values above the current percolation threshold are removed from the network. The logic
for each step in the algorithm is as follows:

1) Define the current percolation threshold. At the start of each iteration, the current
value of the percolation parameter i is defined. This value determines which edges
will remain in the network at this step (those with timeUCB less than i).

2) Filter the network based on the percolation threshold. The nodes remain unchanged,
but the edges are filtered to include only those with timeUCB values below the
current threshold. This results in a modified edge list, which represents the network
at the current percolation step.

3) Construct a new graph. Using the filtered edge list and the full node list, we create
a new graph g_perco. This graph reflects the state of the network after removing
edges based on the percolation parameter.

4) Analyse the modified graph by computing and storing the metrics defined before,
i.e. the he size of the largest connected component (GCC), the number of connected
components and the mean geographic road distance between nodes. Each metric is
appended to its respective list for later analysis. By the end of the algorithm, these
lists will contain a complete record of how the network evolved at each percolation
step.

Below is the code implementation of the inverse percolation algorithm. Each line has
been commented to describe its function:

[49]: # Iterate over parameters
for (i in seq(0, max(df_edges_sub$timeUCB))) {

# Create modified data frames based on the current parameter
df_nodes_perco <- df_nodes_sub
df_edges_perco <- subset(df_edges_sub, timeUCB < i)

# Create a graph g_perco from the modified data frames
g_perco <- graph_from_data_frame(d = df_edges_perco,

vertices = df_nodes_perco,
directed = FALSE)

# Get connected components of the modified graph g_perco
connected_components <- components(g_perco)

# Append the current parameter value to the 'parameters' list
parameters <- c(parameters, i)

# Append the maximum connected component size to the 'gccs' list

REGION : Volume 12, Number 1, 2025



C. Cabrera 97

0

300

600

900

0 500 1000 1500
Travel time with border effect (minutes)

S
iz

e 
of

 G
C

C

Figure 9: Relationship between the size of the Giant Connected Component and the
percolation parameter

gccs <- c(gccs, max(connected_components$csize))

# Append the number of connected components to the 'ncs' list
ncs <- c(ncs, connected_components$no)

# Calculate and append the mean distance weighted by timeUCB
times <- c(times, mean_distance(g_perco,

directed = FALSE,
weights = df_edges_perco$timeUCB,
unconnected = TRUE))

}

5.5.2 Changes in the size of the giant connected component as edges are removed

Once the algorithm is done running, we can plot the size of the GCC as the value of the
percolation parameter is varied.

[50]: # Create a data frame for the plot with parameters and gccs
df <- data.frame(x = parameters, y = gccs)
# Create a ggplot2 plot with customised aesthetics and labels
ggplot(data = df, aes(x = x, y = y)) +

geom_line(color = "blue") +
labs(x = "Travel time with border effect (minutes)",

y = "Size of GCC") +
theme_minimal()

[50]: Output in Figure 9.

We observe for small values of the percolation parameter that rapid changes occur
in the size of the GCC. There are sudden changes in the size of the GCC when the
percolation parameter takes approximately the values 150, 650, 1000, indicating that
there has been a significant alteration in the network’s topology. For example, when edges
with associated travel times of 1000 minutes or less are removed, nodes that act like hubs
may lose connections, and the size of the GCC becomes smaller as a result.

5.5.3 Changes in the number of connected components as edges are removed

We can also plot the number of connected components as the value of the percolation
parameter is varied.
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Figure 10: Relationship between the number of connected components and the percolation
parameter

[51]: # Create a data frame for the plot with parameters and ncs
df <- data.frame(x = parameters, y = ncs)

# Create a ggplot2 plot
ggplot(data = df, aes(x = x, y = y)) +

geom_line(color = "blue") +
labs(x = "Travel time with border effect (minutes)",

y = "No. of connected components") +
theme_minimal()

[51]: Output in Figure 10.

We observe that nearly all the edges in the network are removed for small values of
the percolation parameter so that there are as many components as there are nodes. We
also see that the number of connected components is reduced if the percolation parameter
is above 250 minutes, highlighting that the connectivity of the network is greater above
that threshold value as the network is less fragmented.

5.5.4 Changes in the average travel time as edges are removed

Finally, we plot the average travel time between any pair of nodes as the value of the
percolation parameter is varied.

[52]: # Create a data frame for the plot with percolation parameter and times
df <- data.frame(x = parameters, y = times)

# Create a ggplot2 plot
ggplot(data = df,

aes(x = x, y = y)) +
geom_line(color = "blue") +
labs(x = "Travel time with border effect (minutes)",

y = "Average travel time (minutes)") +
theme_minimal()

[52]: Output in Figure 11.

Note that all the edges are removed when the percolation parameter is 0, and so the
corresponding value of the average travel time is NA. As the percolation parameter is
increased, less edges are removed from the original network and more possible paths
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Figure 11: Relationship between the average travel time with border effect (minutes) and
the percolation parameter.

arise. Note that the average travel time is only computed for existing paths (hence the
unconnected=TRUE parameter in the mean_distance() function). The sudden changes
in the average travel time and the sudden changes in the size of the GCC happen for
the same values of the percolation parameter. For example, there is a large increase in
the average travel time as the percolation parameter decreases below approximately 650
minutes. This suggests that the two parts of the network that were connected for higher
values of the percolation parameter become unconnected for values below 650 minutes as
a considerable number of edges get removed. As a result, the average travel time increases
since there are possibilities to travel further.

6 Conclusion

This article provides an introduction of key concepts, definitions, and applications of
network analysis for the study of geographic data, as well as instructions for the practical
implementation of network analysis in R. The approach presented here offers deeper
insights into how location, distance, and spatial distribution impact the behaviour of
systems where connections are important by integrating geographic data with network
analysis methods.

The versatility of these methods highlights their potential for application across diverse
geographic contexts. While the African road network serves as a specific example, the
underlying principles can be adapted to different contexts and types of networks. This
adaptability makes it possible to apply network analysis to various scales, from small
scale street networks (Ma et al. 2024), to intraurban transport networks (Zhong et al.
2014), inter-regional (Arcaute et al. 2016), or global scale spatial networks (Colizza et al.
2006).

The methods presented here will serve as a foundational resource for the study
of geographic data as the field of spatial network analysis continues to evolve. The
integration of theoretical concepts with practical, accessible tools ensures that researchers
and practitioners can apply these techniques to address the current challenges. Ultimately,
this work contributes to the ongoing development of more robust, efficient, and sustainable
networks in an increasingly interconnected world.
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