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Abstract. Nighttime lights (NTL) data are increasingly used as a proxy for monitoring
national, subnational, and supranational economic activity. These data offer advantages
over traditional economic indicators such as GDP, including greater spatial granularity,
timeliness, lower cost, and comparability between regions regardless of statistical capacity
or political interference. Despite these benefits, the use of NTL data in regional science
has been limited. This is in part due to the lack of accessible methods for processing
and analyzing satellite images. To address this issue, this paper presents a user-friendly
geocomputational notebook that illustrates how to process and analyze satellite NTL
images. The evolution of regional disparities in India is presented as an illustrative example.
The notebook first introduces a cloud-based Python environment for visualizing, analyzing,
and transforming raster satellite images into tabular data. Next, it presents interactive
tools for exploring the space-time patterns of the tabulated data. Finally, it describes
methods for evaluating the usefulness of NTL data in terms of their cross-sectional
predictions, time-series predictions, and regional inequality dynamics.

Key words: satellite nighttime lights, regional income, zonal statistics, exploratory data
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1 Introduction

Nighttime lights (NTL) data have become a widely recognized proxy to monitor economic
activity at the national, subnational, and supranational levels (Chen, Nordhaus 2011,
Henderson et al. 2012, Sutton et al. 2007). The use of NTL data can offer considerable
advantages over traditional economic indicators, such as GDP. For example, NTL data
provide greater spatial granularity, are more timely, and are less costly to construct than
GDP. Furthermore, NTL data are comparable between multiple regions, regardless of
differences in statistical capacity, political interference, or informal activities.

In regional science, several topics could benefit from the use of nighttime light data.
One main topic is the study of regional development and inequality. Researchers have
used nighttime light data as a proxy for subnational income and have found evidence of
increasing or decreasing regional inequality over time (Lessmann, Seidel 2017). These
data can also be used to examine the relationship between regional development and
various factors, such as ethnic inequality (Alesina et al. 2016). Additionally, nighttime
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light data can be used to analyze the impact of localized policies (Kim et al. 2024).
Overall, nighttime light data provide further opportunities to study economic performance
and development at the subnational level, particularly in regions where reliable data are
difficult to obtain (see the survey article of Gibson et al. (2020) for a more comprehensive
overview the use of NTL in economics and Zheng et al. (2023) for an overview of urban
applications).

Despite their potential benefits, the latest NTL data products (Elvidge et al. 2017,
2021, Li et al. 2020, Román et al. 2018) have had limited use in the regional science
literature. One plausible reason is the lack of accessible methods for processing and
analyzing satellite images. Specifically, the processing of large raster-based satellite images
into tabular data has made it difficult for researchers to use the latest satellite data
products. To address this issue, we introduce a geocomputational notebook that provides
a step-by-step guide on how to process and analyze recent satellite NTL images. To
illustrate the functionality of this notebook, we study the evolution of regional disparities
in India. Rapid economic growth, coupled with notable regional imbalances in India, can
be an interesting topic for evaluating the potential uses and limitations of nighttime light
data.

Accessing, processing, and analyzing satellite data requires a basic understanding of
remote sensing and programming principles. To lessen the learning curve and encourage
the use of these data, a growing number of researchers have been sharing their data
processing routines as libraries or functions across several programming languages. For
instance, Falchetta (2023), Miethe (2023) and Njuguna (2020) have developed R libraries
dedicated to extracting data from nightlight satellite imagery. Raschky (2020) has provided
Python functions for the same purpose. Patnaik et al. (2023) have assembled a Julia
library that specializes in processing nightlight imagery. With the same motivation, our
contribution lies in presenting an alternative, yet complementary, approach for processing
and analyzing satellite imagery. By leveraging the pedagogical and computational features
of Jupyter notebooks (Rowe et al. 2020, Reades 2020, Chen et al. 2020), our cloud-based
geocomputational Jupyter notebook provides an integrated environment for efficient code
execution, interactive data visualization, and narrative documentation.

The notebook begins by introducing a cloud-based Python environment for visualizing
and transforming raster images into tabular data. The notebook then presents interactive
tools to explore the space-time patterns of the tabulated data. These tools allow researchers
to better understand both the spatial distribution and the temporal trends of NTL data.
To develop a sense of the informational content of NTL, the space-time patterns of GDP
are also presented. Finally, the notebook illustrates methods for evaluating the usefulness
of NTL data in terms of cross-sectional predictions, time-series predictions, and regional
inequality dynamics.

2 Cloud-based environment

Modern computational notebooks allow us to present code in conjunction with descriptive
text, equations, visualizations, and tables in a single document (Rowe et al. 2020). The
use of such notebooks greatly enhances the reproducibility and transparency of scientific
research. Despite the advances offered by computational notebooks, a significant challenge
persists in the reproducibility of the computational environment, which is essential for
generating consistent results. Especially for geospatial analysis, a notebook user still
needs to download, install, and manage numerous computational libraries and their
dependencies.

Cloud-based environments such as Google Colab, Anaconda Cloud or Deepnote
offer solutions to the reproducible-environment problem. They operate on cloud com-
puters that can be reproduced with a single click. To process and analyze satellite
images in a fully reproducible cloud-based environment, we host our notebook on Google
Colab: https://colab.research.google.com/github/quarcs-lab/project2022p/blob/master/-
project2022p_notebook.ipynb. This cloud-based environment can be easily duplicated,
run, and extended after logging in with a Google account. Furthermore, when operating in
the cloud, the “forms” feature of Google Colab’s code cells facilitates the display, folding,
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Table 1: List of required packages and standard libraries

Package Version Description

numpy 1.23.5 Library that provides functions for mathematical operations and handling
arrays

pandas 1.5.3 Library that provides a data frame class and functions to manipulate data
frames

geopandas 0.13.2 Library that helps work with spatial data
matplotlib 3.7.1 Plotting library, including plotting functions
contextily 1.3.0 Library that helps to add base layers to maps
rasterio 1.3.9 Library for raster data processing
linearmodels 4.27 Library for linear regressions, including panel data analysis
inequality 1.0.0 Library that provides methods for measuring inequality
os Operating system interface
requests 2.31.0 HTTP library for making requests in Python
glob File path pattern matching
shutil High-level file operation utilities
bs4 BeautifulSoup library for parsing HTML and XML
json Library for working with JSON data
gzip Library for compressing and decompressing files using the gzip format
plotly 5.15.0 High-level library for creating interactive visualizations with Plotly
cufflinks 0.17.3 Productivity Tools for Plotly + Pandas
mpl_toolkits Tool for advanced axes layout in Matplotlib
linearmodels 4.27 Library for performing linear regressions

and parameterization of code.
At its minimum, this environment requires the libraries shown in Table 1. The results

were produced using Python 3.10.12. To start, we install the required Python libraries
that are not pre-installed in Google Colab.

[1]: # @title CODE: Install libraries

!pip install \
numpy==1.23.5 \
pandas==1.5.3 \
geopandas==0.13.2 \
matplotlib==3.7.1 \
contextily==1.3.0 \
rasterio==1.3.9 \
folium==0.14.0 \
kaleido==0.2.1 \
mapclassify==2.6.0 \
linearmodels==4.27 \
inequality==1.0.0 \
cufflinks==0.17.3 \
requests==2.31.0 \
plotly==5.15.0 \
--quiet

In the next cell, we load the libraries.

[2]: # @title CODE: Import libraries

import numpy as np # Library that provides functions for mathematical operations
# and handling arrays

import pandas as pd # Library that provides a data frame class and functions to
# manipulate data frames

import geopandas as gpd # Library that helps working with spatial data

import matplotlib.pyplot as plt # Function for 2D plotting
from matplotlib.gridspec import GridSpec
from mpl_toolkits.axes_grid1 import (

make_axes_locatable,
) # Function to create a new axis on a plot

import contextily as cx # Library that helps adding OSM base layer to plots.

REGION : Volume 11, Number 1, 2024



82 C. Mendez, A. Patnaik

import plotly.express as px # Library for interactive plotting

# Libraries to allow plotly to be offline and show plots in a jupyter notebook
import plotly.io as pio
import plotly.graph_objects as go
import cufflinks as cf

cf.go_offline()

import rasterio # Library for raster data processing
from rasterio import plot as rioplot # Function to plot raster data
from rasterio.mask import (

mask,
) # Function for masking raster data using shapefile for zonal statistics

# linearmodels library provides helps performing regressions
from linearmodels import PooledOLS # Function to perform pooled OLS regression
from linearmodels import PanelOLS # Function to perform OLS regression on panel data
from linearmodels import (

BetweenOLS,
) # Function to compute the between estimator of an OLS regression
from linearmodels.panel.results import (

compare,
) # Function compare results of an OLS regression

import inequality # Library that provides methods for measuring spatial inequality

import os # Operating system interface
import requests # HTTP library for making requests in Python
import glob # File path pattern matching
import shutil # High-level file operation utilities
from bs4 import BeautifulSoup # BeautifulSoup library for parsing HTML and XML
import json # Library for working with JSON data
import gzip # Library for compressing and decompressing files using the gzip format

We configure table display parameters to abbreviate content and ensure readability.
Additionally, we adjust the Plotly renderer to “colab” when the notebook is executed in
that environment.

[3]: # @title CODE: Set parameters

# Abbreviate displayed tables

# Set precision to 4
pd.set_option("display.precision", 4)

# Set max columns to 7
pd.set_option("display.max_columns", 7)

# Set max rows to 10
pd.set_option("display.max_rows", 10)

# Set renderer for plotly

if 'COLAB_GPU' in os.environ:
pio.renderers.default = "colab"

elif 'NOTEBOOK_MODE' in os.environ and os.environ['NOTEBOOK_MODE'] == 'colab':
pio.renderers.default = "colab"

3 Data

In this notebook, we use three datasets: (1) satellite nighttime light images from Elvidge
et al. (2021); (2) subnational income per capita from Smits, Permanyer (2019); and (3)
administrative boundaries for the states of India from Smits, Permanyer (2019). To work
with these datasets, we first need to define our analysis period and organize the directory
structure of our computational environment. We define the start and end years as global
variables. This definition restricts the study to a particular time frame, allowing us to
focus on a particular period of interest. The start and end years can take values from
2014 to 2021.
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Note: While minimal adjustments enable the use of images of 2012 and 2013, it’s
important to acknowledge that they have not undergone stray light correction.

[4]: # @title CODE: Define start and end years
START_YEAR = 2014 # @param {type:"integer"}

END_YEAR = 2019 # @param {type:"integer"}

Next, we define the directory paths where the datasets will be downloaded. In the
same cell, we also define the paths where figures and tables will be saved during the
execution of the notebook. Appendix B gives more details about these folders and the
files which will be saved in them.

We also create the directories and delete the sample_data directory of Colab.

[5]: # @title CODE: Define paths and directories
# Remove sample_data folder provided by Colab.
!rm -rf sample_data
# Define path constants
FIGURES_DIRECTORY = "figures"
TABLES_DIRECTORY = "tables"
VECTOR_DIRECTORY = "data/vector"
TABULAR_DIRECTORY = "data/tabular"
RASTER_DIRECTORY = "data/raster"

# Check and create folders using a loop
for path in [

FIGURES_DIRECTORY,
TABLES_DIRECTORY,
VECTOR_DIRECTORY,
TABULAR_DIRECTORY,
RASTER_DIRECTORY,

]:
if not os.path.exists(path):

os.makedirs(path)
print(f"Created folder: {path}")

3.1 Satellite nighttime light images

The Defense Meteorological Satellite Program Operational Linescan System (DMSP-OLS)
and the Visible Infrared Imaging Radiometer Suite (VIIRS) are two satellite sensors that
have been used to construct global nighttime lights datasets (Levin et al. 2020, Elvidge
et al. 2013, Gibson et al. 2020, Donaldson, Storeygard 2016). The DMSP-OLS, launched
in the 1970s by the US Air Force, was the first sensor used to systematically collect
low-light imaging data of the earth at night. The resulting DMSP nighttime lights dataset
has been widely used since the 1990s to study socioeconomic activity (Henderson et al.
2012, Chen, Nordhaus 2011, Gibson 2020). In contrast, the VIIRS sensor was launched
by NASA and NOAA in 2011 on the Suomi NPP satellite. In remote sensing and natural
sciences, the higher-quality VIIRS data quickly began to replace DMSP data in many
applications (Elvidge et al. 2013, 2017, 2021). In economics and social sciences, however,
the use of DMSP data is still predominant, and concerns have been raised about the
measurement errors associated with these data (Abrahams et al. 2018, Gibson et al. 2021,
Gibson 2020, Zhang et al. 2023).

The VIIRS nighttime light data has several advantages over the DMSP data. The
VIIRS dataset has a much finer spatial resolution, 15 arc-second grids compared to the
30 arc-second grids for DMSP. The measurement units of the VIIRS data are radiance
values in radiometric units, specifically nanowatts per square centimeter per steradian
(nW/cm2/sr). On the other hand, DMSP data employ radiance values measured in digital
numbers (DN). Both higher resolution and more precise measurement units allow the
VIIRS data to provide a more accurate delineation between urban centers and rural
areas. In addition, the VIIRS sensors have a greater radiometric range, better calibration,
and less burring, providing more consistent measurements over time and across space.
However, VIIRS data currently have shorter time series than the DMSP data, spanning
only 2012-present compared to 1992-2013 for DMSP. This makes the VIIRS data less
useful for studying long-term economic and urban trends. Overall, the VIIRS data offer
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superior features for cross-sectional and time series analyses, but researchers requiring
long-time series may still need to use the DMSP data despite their flaws.

In this notebook, we focus on analyzing the annual VIIRS 2.1 dataset, as pre-processed
by Elvidge et al. (2021). These authors employed monthly averages of radiance without
cloud interference to create a series of global nighttime light images spanning 2012-
2019. The pre-processing steps involved the exclusion of biomass burning, aurora, and
background noise. Outliers were eliminated through a twelve-month median. Areas
lacking detectable lighting were identified using a statistical texture measure. Addi-
tionally, the images exhibit enhanced noise filtering, attributed to an extended thresh-
old applied over multiple years. As a result of this pre-processing, the images pro-
vide high spatial-temporal consistency and facilitate the analysis of changes over time.
The raster images associated with this dataset are available in the website of Earth
Observation Group (EOG) of the Payne Institute for Public Policy of the Colorado
School of Mines: https: //eogdata.mines.edu/products/vnl. For complementary and
exploratory purposes, Appendix C briefly illustrates how to access and analyze the cal-
ibrated version of the DMSP dataset that has been pre-processed by Li et al. (2020).
The raster images associated with this dataset (Li et al. 2021) are available in Figshare:
https://doi.org/10.6084/m9.figshare.9828827.v5.

The VIIRS nighttime lights data can be downloaded via EOG’s API by creating a free
account at the registration page: https://eogdata.mines.edu/products/register/. After
registration, the values of the USERNAME and PASSWORD need to be updated in
the following cell. The CLIENT_ID and CLIENT_SECRET are public, but they may
change from time to time, and if the cell fails to run, the values should be updated. The
latest values can be found on EOG’s registration page.

[6]: # @title CODE: Write your EOG's access credentials

## Make an account at EOG: https://eogdata.mines.edu/products/register/
USERNAME = "" # @param {type:"string"}
PASSWORD = "" # @param {type:"string"}
CLIENT_ID = "eogdata_oidc" # @param {type:"string"}
CLIENT_SECRET = "2677ad81-521b-4869-8480-6d05b9e57d48" # @param {type:"string"}

def download_link(link):
"""
Function to download image from EOG using the API

Parameters:
-----------
link : str

Returns:
--------
None

Notes:
------
Downloads image in RASTER_DIRECTORY
"""
output_file = os.path.basename(link)
output_file = os.path.join(

RASTER_DIRECTORY, output_file
) # Construct full path with folder
if os.path.isfile(output_file):

print(f"File {output_file} already exists. Skipping download.")
return

params = {
"client_id": CLIENT_ID,
"client_secret": CLIENT_SECRET,
"username": USERNAME,
"password": PASSWORD,
"grant_type": "password",

}
token_url = (
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"https://eogauth.mines.edu/auth/realms/master/protocol/openid-connect/token"
)
response = requests.post(token_url, data=params)
access_token_dict = json.loads(response.text)
access_token = access_token_dict.get("access_token")
data_url = link
auth = "Bearer " + access_token
headers = {"Authorization": auth}
response = requests.get(data_url, headers=headers)

with open(output_file, "wb") as f:
f.write(response.content)

print(f"File {output_file} downloaded successfully.")

base_url = "https://eogdata.mines.edu/nighttime_light/annual/v21/{}/"

for year in range(
START_YEAR, END_YEAR + 1

): # loop through years START_YEAR to END_YEAR
url = f"https://eogdata.mines.edu/nighttime_light/annual/v21/{year}/VNL_v21_npp_

{year}_global_vcmslcfg_c202205302300.median_masked.dat.tif.gz"
download_link(url)

[6]: File data/raster\VNL_v21_npp_2014_global_(...).dat.tif.gz downloaded successfully.
File data/raster\VNL_v21_npp_2015_global_(...).dat.tif.gz downloaded successfully.
File data/raster\VNL_v21_npp_2016_global_(...).dat.tif.gz downloaded successfully.
File data/raster\VNL_v21_npp_2017_global_(...).dat.tif.gz downloaded successfully.
File data/raster\VNL_v21_npp_2018_global_(...).dat.tif.gz downloaded successfully.
File data/raster\VNL_v21_npp_2019_global_(...).dat.tif.gz downloaded successfully.

The loop runs from START_YEAR to END_YEAR and fetches the files containing
VIIRS V2.1 images for each year. The downloaded files are compressed, and need to be
extracted to be used. For illustration and computational efficiency purposes, we focus
only on the 2014-2019 period. An analysis for other years (2012, 2020-onwards) is also
possible by adjusting the names of the decompressed files in a sequential way.

[7]: # @title CODE: Extract downloaded images

# Get the current working directory
current_dir = os.getcwd()

# Find all .gz files in the data/raster folder

for file in glob.glob(os.path.join(current_dir, RASTER_DIRECTORY, "*.gz")):
with gzip.open(file, "rb") as compressed_file, open(

file[:-3], "wb"
) as extracted_file:

shutil.copyfileobj(compressed_file, extracted_file) # Stream data directly
os.remove(file)

print("Successfully extracted all .gz files!")

3.2 Regional income and administrative boundaries

Smits, Permanyer (2019) have recently compiled a database of socioeconomic indicators
at the subnational level. The dataset is based on the first-level administrative regions.
As an indicator of subnational GDP per capita, we use Gross National Income per
capita in thousands of US dollars (2011 PPP) from this database. We utilize version
4.0 of the dataset, which also includes a shapefile containing the boundaries of the
administrative regions. All these datasets are available from the Global Data Lab website:
https://globaldatalab.org.

A small part of the dataset, for the Indian states, has been downloaded and uploaded
to GitHub to facilitate the exposition of this notebook. In the code below, the subnational
GDP file of India is loaded as a pandas dataframe.
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[8]: # @title CODE: Read state level GDP data from a csv file

df_GDP = pd.read_csv(
"https://gist.github.com/cmg777/150c0b93ae8eb14fec9babdf4f5f8fc4/raw/

2af006ed2b80cdb3ef9b6dd13ccc8a450c168765/df_GDP_India36.csv"
)

Next, we load the vector file that contains the borders of Indian states using geopandas.
The file is loaded into a GeoDataFrame, which has a column that contains geometric
information in the form of polygons. This column is utilized for conducting geometric
operations, such as spatial joins and intersections, as well as for visualizing the data using
tools like matplotlib.

[9]: # @title CODE: Read administrative boundaries

# The boundaries of states of India are stored in gdf_india36.geojson. The file is
loaded using the read_file function from geopandas
map_url = "https://gist.github.com/cmg777/19c25af8fcfe2291cfb6f9abf141d45a/raw/

48e1489e97f975c5a2253d2068cf99a3c2d0cff3/gdf_india36.geojson"

polygons_files = gpd.read_file(map_url)

4 Processing satellite nighttime images

4.1 Importing and visualizing satellite images

We define a function to load a satellite image (raster file) for a given year. The function
finds the path of the file corresponding to the provided year value, and loads it using
rasterio.

[10]: # @title CODE: Define function to load satellite images

def load_raster(year):
"""
Load a raster file based on the provided time identifier.

Parameters:
-----------
year : int

Returns:
--------
rasterio.io.DatasetReader
An opened raster file dataset ready for further operations.

Example:
--------
>>> raster_2014 = load_raster(2014)
>>> type(raster_2014)
<class 'rasterio.io.DatasetReader'>

Notes:
------
Modify the path in the function if your file structure
or naming convention differs.
"""
raster_path = f"{RASTER_DIRECTORY}/VNL_v21_npp_{year}*"
return rasterio.open(glob.glob(raster_path)[0])

We next extract the bounding box of the country map (vector file), which is the
latitude and longitude extent of India. This allows us to crop the NTL images to values
only for our area of interest. This step can reduce memory usage, computation time and
make it easier to visualise the NTL around the area of interest.

[11]: # @title CODE: Extract the bounding box using the boundaries of the map

polygons_files_bbox = polygons_files.total_bounds
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Next, we utilize load_raster to load the NTL images of the world for the start
and end years. Then, we employ the bounding box of the vector file to crop the image
specifically to India.

[12]: # @title CODE: Load images and crop them

# The raster file corresponding to the start year is loaded using the open function
# in rasterio
raster_file_first = load_raster(START_YEAR)

# The bounding box of the vector data is used to crop the raster file
raster_file_window_first = raster_file_first.window(*polygons_files_bbox)
raster_file_clipped_first = raster_file_first.read(1, window=raster_file_window_first)

# The raster file corresponding to the end year is loaded using the open function
# in rasterio
raster_file_last = load_raster(END_YEAR)

# The bounding box of the vector data is used to crop the raster file
raster_file_window_last = raster_file_last.window(*polygons_files_bbox)
raster_file_clipped_last = raster_file_last.read(1, window=raster_file_window_last)

In Figure 1, we overlay the cropped NTL images for the start and end years. We
then superimpose the state boundaries from the vector file. As expected, India exhibits a
brighter appearance in the image for the end year in comparison to the start year.

[13]: # @title CODE: Plot satellite images before and after

# Initialize the GridSpec for setting up the plot structure
RADIANCE_THRESHOLD = 6 # @param {type:"number"}

gs = GridSpec(1, 3, width_ratios=[2, 2, 0.1])

fig = plt.figure(figsize=(15, 8))
ax1 = fig.add_subplot(gs[0])

first_year_plot = ax1.imshow(
raster_file_clipped_first,
extent=polygons_files_bbox[[0, 2, 1, 3]],
vmin=0,
vmax=RADIANCE_THRESHOLD,
cmap="magma",

)
polygons_files.boundary.plot(ax=ax1, color="skyblue", linewidth=0.4)
cx.add_basemap(ax1, crs=polygons_files.crs.to_string(),

source = cx.providers.CartoDB.DarkMatterOnlyLabels, attribution=False)

ax1.set_title(f"(a) Nighttime lights in {START_YEAR}")
ax1.set_axis_off()

ax2 = fig.add_subplot(gs[1])

last_year_plot = ax2.imshow(
raster_file_clipped_last,
extent=polygons_files_bbox[[0, 2, 1, 3]],
vmin=0,
vmax=RADIANCE_THRESHOLD,
cmap="magma",

)
polygons_files.boundary.plot(ax=ax2, color="skyblue", linewidth=0.4)
cx.add_basemap(ax2, crs=polygons_files.crs.to_string(),

source = cx.providers.CartoDB.DarkMatterOnlyLabels, attribution=False)
ax2.set_title(f"(b) Nighttime lights in {END_YEAR}")
ax2.set_axis_off()

cax2 = fig.add_subplot(gs[2])
# Add colorbar
cbar = fig.colorbar(

first_year_plot, cax=cax2, label="Luminosity intensity (nanoWatts/sr/$cmˆ2$)"
)

REGION : Volume 11, Number 1, 2024



88 C. Mendez, A. Patnaik

(a) Nighttime lights in 2014 (b) Nighttime lights in 2019
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Figure 1: Raster images of nighttime lights and administrative boundaries of India: Initial
vs final year

# Set ticks and labels with the last one as f"{RADIANCE_THRESHOLD}+"
cbar.set_ticklabels(

[f"{val}" for val in cbar.get_ticks()[:-1]] + [f"{RADIANCE_THRESHOLD}+"]
)

plt.tight_layout()
plt.savefig("figures/NTL.png", dpi=300, bbox_inches="tight")
plt.show()

[13]: Output in Figure 1

4.2 Computing zonal statistics

To make a meaningful comparison between NTL and subnational GDP, it is crucial to
ensure that both datasets are measured at the same geographic scale. As GDP is available
at the state level, we need to aggregate the NTL values accordingly. This can be achieved
through zonal statistics, where we sum the amount of light within the boundaries of each
state, resulting in a state-level dataset of regional luminosity.

To accomplish this aggregation, we initially load the NTL images for each year of
interest. Next, we define a mask function that can filter all points outside the polygon
in the raster file. Lastly, we apply the mask function to each polygon in the vector file,
resulting in the summation that generates state-level luminosity for each year. More details
about this implementation are provided in Appendix A. Although missing values are not
a problem in our state-level dataset, they are more prone to occur when geographical
units are small, largely rural, or sparsely populated.

[14]: # @title CODE: Define dataset to store results

gdf_NTL = polygons_files.copy()

[15]: # @title CODE: Compute zonal statistics

# Choose an operator for aggregation. In this notebook, the operator, AGGREGATE_OPERATOR,
# has been set to np.ma.sum.
# Other operators can be chosen, for example, np.ma.mean and np.ma.median will compute
# the mean and median respectively.
# The list of operators can be found here:
# https://numpy.org/doc/stable/reference/routines.ma.html
AGGREGATE_OPERATOR = np.ma.sum
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Table 2: Regional nighttime light values over time

id region geometry ... 2017 2018 2019

0 1 Andaman and Nico-
bar Islands

MULTIPOLYGON (((93.84... ... 2.9501e+03 3.3096e+03 3.4267e+03

1 3 Arunachal Pradesh MULTIPOLYGON (((95.23... ... 8.4099e+03 8.1394e+03 1.1512e+04
2 4 Assam MULTIPOLYGON (((95.19... ... 1.7227e+05 1.6381e+05 1.6768e+05
3 5 Bihar MULTIPOLYGON (((88.11... ... 4.4029e+05 5.3907e+05 6.2007e+05
4 6 Chandigarth MULTIPOLYGON (((76.84... ... 1.3767e+04 1.3751e+04 1.4122e+04
... ... ... ... ... ... ... ...
31 34 Uttar Pradesh MULTIPOLYGON (((79.39... ... 1.7540e+06 1.6793e+06 1.6754e+06
32 35 Uttarakhand MULTIPOLYGON (((80.07... ... 1.1927e+05 1.1099e+05 1.1275e+05
33 36 West Bengal MULTIPOLYGON (((88.49... ... 5.2243e+05 5.1658e+05 5.0112e+05
34 26 Odisha MULTIPOLYGON (((86.72... ... 3.6816e+05 3.7614e+05 3.6962e+05
35 2 Andhra Pradesh MULTIPOLYGON (((81.10... ... 3.7570e+05 4.3301e+05 4.6353e+05

# Define the clean_mask function outside the loop
def geom_mask(geom, dataset, crop=True, all_touched=True):

masked, mask_transform = mask(
dataset=dataset, shapes=(geom,), crop=crop, all_touched=all_touched

)
return masked

# A loop runs from the start year to the end year that computes the aggregate nighttime
# lights radiance for each state
for year in range(START_YEAR, END_YEAR + 1):

# The raster file of the given year is loaded
raster_file = load_raster(year)
# The mask is applied, and then a summation is performed for computing the aggregate
# radiance.
statewise_agg_ntl = polygons_files.geometry.apply(

geom_mask, dataset=raster_file
).apply(AGGREGATE_OPERATOR)

# The state-wise aggregate radiance of the year is stored in the data frame that was
# initialized earlier.
gdf_NTL[str(year)] = statewise_agg_ntl

As the final step in the aggregation process, we obtain a GeoDataFrame in which each
column represents the total sum of nighttime lights for each state across all years.

[16]: # @title CODE: Show zonal statistics results
gdf_NTL

[16]: Output in Table 2

Next, we create a dataset of summary statistics for state-level nighttime lights by year.

[17]: # @title CODE: Show descriptive statistics by year

# The summary statistics of aggregate nighttime lights is produced for each year
gdf_NTL_summary = gdf_NTL.drop(["geometry", "id"], axis=1).describe().round(2)
gdf_NTL_summary

[17]: Output in Table 3

Next, we export the results as a geojson file, ready for analysis in standard geospatial
applications and data science languages.

[18]: # @title CODE: Save tabular NTL dataset

gdf_NTL.to_file("data/vector/gdf_NTL.geojson", driver="GeoJSON")

4.3 Creating panel-data structures

Having successfully aggregated the nighttime lights data to the state level to align with
the resolution of the subnational GDP data, we can now create panel-data structures for

REGION : Volume 11, Number 1, 2024



90 C. Mendez, A. Patnaik

Table 3: Descriptive statistics of regional nighttime lights

2014 2015 2016 2017 2018 2019

count 3.6000e+01 36.00 3.6000e+01 3.6000e+01 3.6000e+01 3.6000e+01
mean 2.4044e+05 254096.11 2.5798e+05 3.0650e+05 3.1984e+05 3.3252e+05
std 2.7458e+05 284386.91 3.0769e+05 3.8398e+05 3.9127e+05 4.0660e+05
min 8.7400e+01 92.03 7.3820e+01 1.0994e+02 1.2033e+02 1.3022e+02
25% 1.1262e+04 11442.40 1.2232e+04 1.3355e+04 1.3229e+04 1.3640e+04
50% 1.4720e+05 170297.48 1.4774e+05 1.6523e+05 1.6215e+05 1.6067e+05
75% 4.1105e+05 378816.13 3.6443e+05 4.4962e+05 5.1787e+05 5.0807e+05
max 1.0247e+06 993814.31 1.2645e+06 1.7540e+06 1.6793e+06 1.6754e+06

both datasets and merge them into a single dataset. We first retrieve the state-level NTL
and GDP data. Both datasets are transformed into long-form panel structures. Thus,
they are ready to be merged into a single dataset.

[19]: # @title CODE: Read saved NTL data

df_NTL = gpd.read_file("data/vector/gdf_NTL.geojson").drop("geometry", axis=1)

[20]: # @title CODE: Reshape NTL data into long-form panel data

df2_NTL = pd.melt(
df_NTL,
id_vars=["id", "region"],
value_vars=[str(x) for x in range(START_YEAR, END_YEAR + 1)],

)
df2_NTL.columns = ["id", "region", "year", "NTL"]

[21]: # @title CODE: Reshape GDP data into long-form panel data

df2_GDP = pd.melt(
df_GDP,
id_vars=["id", "region"],
value_vars=[str(x) for x in range(START_YEAR, END_YEAR + 1)],

)
df2_GDP.columns = ["id", "region", "year", "GDP"]

[22]: # @title CODE: Merge NTL and GDP datasets

df = pd.merge(df2_GDP, df2_NTL, on=["id", "region", "year"], how="inner")

Two new columns are added on the basis of the natural logarithmic values of NTL
and GDP. To avoid calculation problems with the logarithmic values, we add a constant
of 0.01.

[23]: # @title CODE: Add offset to compute log values

LOG_OFFSET = 0.01
df["lnNTL"] = np.log(LOG_OFFSET + df["NTL"])
df["lnGDP"] = np.log(LOG_OFFSET + df["GDP"])

Finally, we have a long-form panel-data structure of state-level NTL and GDP.

[24]: # @title CODE: Show long-form dataset

df

[24]: Output in Table 4

[25]: # @title CODE: Save long-form dataset

df.to_csv("data/tabular/df_NTL_GDP_lnNTL_lnGDP.csv", index=False)

For other kinds of analysis, this panel-data structure is reshaped into its wide form.
This new dataset contains the following columns: id, region name, geometry, and logarithm
values of NTL for each year
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Table 4: Regional GDP and nighttime lights: Long-form panel dataset

id region year GDP NTL lnNTL lnGDP

0 1 Andaman and Nico-
bar Islands

2014 3.9615e+06 2.9365e+03 7.9850 15.1921

1 2 Andhra Pradesh 2014 4.3554e+08 3.0310e+05 12.6218 19.8921
2 3 Arunachal Pradesh 2014 8.5731e+06 7.2797e+03 8.8928 15.9641
3 4 Assam 2014 1.1240e+08 1.5431e+05 11.9467 18.5376
4 5 Bihar 2014 2.6511e+08 2.0255e+05 12.2187 19.3957
... ... ... ... ... ... ... ...
211 32 Telangana 2019 3.6413e+08 5.2893e+05 13.1786 19.7130
212 33 Tripura 2019 1.9736e+07 3.4391e+04 10.4456 16.7980
213 34 Uttar Pradesh 2019 9.9160e+08 1.6754e+06 14.3316 20.7148
214 35 Uttarakhand 2019 9.9485e+07 1.1275e+05 11.6330 18.4155
215 36 West Bengal 2019 5.5466e+08 5.0112e+05 13.1246 20.1339

[26]: # @title CODE: Generate a wide-form dataset for (ln) NTL

# Pivot panel data from long form to wide form
df_lnNTL = df.pivot_table(

index=["id", "region"], columns="year", values="lnNTL"
).reset_index(drop=False)
# Make sure the column names are strings
df_lnNTL.columns = df_lnNTL.columns.astype(str)

[27]: # @title CODE: Merge (ln) NTL dataset with map file

gdf_lnNTL = pd.merge(
polygons_files,
df_lnNTL,
left_on=["id", "region"],
right_on=["id", "region"],
how="inner",

)
gdf_lnNTL

[27]: Output in Table 5

Table 5: Regional (ln) NTL: Wide-form panel dataset

id region geometry ... 2017 2018 2019

0 1 Andaman and Nico-
bar Islands

MULTIPOLYGON (((93.84... ... 7.9896 8.1046 8.1394

1 3 Arunachal Pradesh MULTIPOLYGON (((95.23... ... 9.0372 9.0045 9.3512
2 4 Assam MULTIPOLYGON (((95.19... ... 12.0568 12.0064 12.0298
3 5 Bihar MULTIPOLYGON (((88.11... ... 12.9952 13.1976 13.3376
4 6 Chandigarth MULTIPOLYGON (((76.84... ... 9.5301 9.5289 9.5555
... ... ... ... ... ... ... ...
31 34 Uttar Pradesh MULTIPOLYGON (((79.39... ... 14.3774 14.3339 14.3316
32 35 Uttarakhand MULTIPOLYGON (((80.07... ... 11.6891 11.6172 11.6330
33 36 West Bengal MULTIPOLYGON (((88.49... ... 13.1662 13.1550 13.1246
34 26 Odisha MULTIPOLYGON (((86.72... ... 12.8163 12.8377 12.8202
35 2 Andhra Pradesh MULTIPOLYGON (((81.10... ... 12.8366 12.9785 13.0466

The resulting geospatial dataset is saved and will be used in various visualizations in
the next section.

[28]: # @title CODE: Save geospatial dataset of (ln) NTL

gdf_lnNTL.to_file("data/vector/gdf_lnNTL.geojson", driver="GeoJSON")

Similarly, we construct a wide-form panel dataset for the natural logarithmic values
of GDP.
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[29]: # @title CODE: Generate wide-form dataset for (ln) GDP

# Pivot panel data from long form to wide form
df_lnGDP = df.pivot_table(

index=["id", "region"], columns="year", values="lnGDP"
).reset_index(drop=False)
# Make sure the column names are strings
df_lnGDP.columns = df_lnGDP.columns.astype(str)

[30]: # @title CODE: Merge (ln) GDP dataset with map file

gdf_lnGDP = pd.merge(
polygons_files,
df_lnGDP,
left_on=["id", "region"],
right_on=["id", "region"],
how="inner",

)
gdf_lnGDP

[30]: Output in Table 6

Table 6: Regional (ln) GDP: Wide-form panel dataset

id region geometry ... 2017 2018 2019

0 1 Andaman and Nico-
bar Islands

MULTIPOLYGON (((93.84... ... 15.2835 15.3464 15.3980

1 3 Arunachal Pradesh MULTIPOLYGON (((95.23... ... 15.8766 15.9368 15.9862
2 4 Assam MULTIPOLYGON (((95.19... ... 18.6488 18.7058 18.7527
3 5 Bihar MULTIPOLYGON (((88.11... ... 19.6709 19.7264 19.7721
4 6 Chandigarth MULTIPOLYGON (((76.84... ... 16.6551 16.7201 16.7734
... ... ... ... ... ... ... ...
31 34 Uttar Pradesh MULTIPOLYGON (((79.39... ... 20.6101 20.6675 20.7148
32 35 Uttarakhand MULTIPOLYGON (((80.07... ... 18.3042 18.3653 18.4155
33 36 West Bengal MULTIPOLYGON (((88.49... ... 20.0276 20.0859 20.1339
34 26 Odisha MULTIPOLYGON (((86.72... ... 18.9935 19.0504 19.0973
35 2 Andhra Pradesh MULTIPOLYGON (((81.10... ... 19.8205 19.8810 19.9307

[31]: # @title CODE: Save geospatial dataset of (ln) NTL

gdf_lnGDP.to_file("data/vector/gdf_lnGDP.geojson", driver="GeoJSON")

5 Analyzing nighttime lights and GDP

5.1 Exploring space-time patterns

5.1.1 Choropleth maps

Based on the previously constructed panel-data structures (gdf_lnNTL and gdf_lnGDP),
we can easily visualize comparative choropleth maps for (log) nighttime lights and GDP.
In particular, the explore() function of the Geopandas package allows us to easily
construct interactive maps. In addition, consistent with the Mapclassify package,
multiple classification schemes are available. For example, in Figures 2 and 3, we use a
boxplot classification to understand the spatial distribution of NTL and GDP in 2014.
We can easily identify where the regions below and above the median are located. We
can also identify and compare potential spatial clusters in both distributions.

[32]: # @title CODE: Plot interactive choroplet map for ln NTL

gdf_lnNTL.explore(
column=str(START_YEAR),
tooltip=["region", str(START_YEAR)],
scheme="BoxPlot", # Quantiles, EqualInterval, BoxPlot, FisherJenks
cmap="magma", # hot, cividis, plasma, magma, inferno, coolwarm, viridis
legend=True,
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Note: Find the interactive version of this graph at Colab

Figure 2: Distribution of (log) NTL in 2014

tiles="CartoDB dark_matter", # CartoDB dark_matter OpenStreetMap, Stamen Terrain,
Stamen Toner, Stamen Watercolor, CartoDB positron, CartoDB dark_mat,

style_kwds=dict(color="darkgrey", weight=0.8),
legend_kwds=dict(colorbar=False),

)

[32]: Output in Figure 2

[33]: # @title CODE: Plot interactive choroplet map for ln GDP

gdf_lnGDP.explore(
column=str(END_YEAR),
tooltip=["region", str(END_YEAR)],
scheme="BoxPlot", # Quantiles, EqualInterval, BoxPlot, FisherJenks
cmap="magma", # hot, cividis, plasma, magma, inferno, coolwarm, viridis
legend=True,
tiles="CartoDB dark_matter", # CartoDB dark_matter OpenStreetMap, Stamen Terrain,

Stamen Toner, Stamen Watercolor, CartoDB positron, CartoDB dark_mat,
style_kwds=dict(color="darkgrey", weight=0.8),
legend_kwds=dict(colorbar=False),

)

[33]: Output in Figure 3

Static choropleth maps can also be produced, allowing them to be included in non-
HTML reports. In Figures 4 and 5, we show how the spatial distributions of NTL and
GDP have changed over time. For that purpose, we keep the classification of the initial
year constant (except for the minimum and maximum values). Based on these maps, we
can observe inter-quantile mobility over time.

[34]: # @title CODE: Plot static map of (log) NTL for the initial and final year

# A figure is initialized
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(12, 8))

# The plot of the start year is added
gdf_lnNTL.plot(

column=str(START_YEAR),
scheme="BoxPlot",
cmap="magma",
edgecolor="darkgrey",
legend=True,
ax=axes[0],
legend_kwds={"bbox_to_anchor": (0.88, 0.30)},

REGION : Volume 11, Number 1, 2024

https://colab.research.google.com/github/quarcs-lab/project2022p/blob/master/project2022p_notebook.ipynb


94 C. Mendez, A. Patnaik

Note: Find the interactive version of this graph at Colab

Figure 3: Distribution of (log) GDP in 2014

)
cx.add_basemap(

ax=axes[0],
crs=gdf_lnNTL.crs.to_string(),
source=cx.providers.CartoDB.DarkMatterNoLabels,
attribution=False,

)

cx.add_basemap(
ax=axes[0],
crs=gdf_lnNTL.crs.to_string(),
source=cx.providers.CartoDB.DarkMatterOnlyLabels,
attribution=False,

)

# The plot of the end year is added.
gdf_lnNTL.plot(

column=str(END_YEAR),
scheme="user_defined",
classification_kwds={"bins": [3.92, 9.33, 11.90, 12.93]},
cmap="magma",
edgecolor="darkgrey",
legend=True,
ax=axes[1],
legend_kwds={"bbox_to_anchor": (0.88, 0.30)},

)
cx.add_basemap(

ax=axes[1],
crs=gdf_lnNTL.crs.to_string(),
source=cx.providers.CartoDB.DarkMatterNoLabels,
attribution=False,

)

cx.add_basemap(
ax=axes[1],
crs=gdf_lnNTL.crs.to_string(),
source=cx.providers.CartoDB.DarkMatterOnlyLabels,
attribution=False,

)

plt.tight_layout()
axes[0].axis("off")
axes[1].axis("off")
axes[0].set_title("(a) Log of NTL in " + str(START_YEAR))
axes[1].set_title("(b) Log of NTL in " + str(END_YEAR))
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plt.savefig("figures/fig_map_lnNTL.png", dpi=300, bbox_inches="tight")
plt.show()

[34]: Output in Figure 4

(a) Log of NTL in 2014

 -inf,  3.92
 3.92,  9.33
 9.33, 11.90
11.90, 12.93
12.93, 18.33

(b) Log of NTL in 2019

 -inf,  3.92
 3.92,  9.33
 9.33, 11.90
11.90, 12.93
12.93, 14.33

Figure 4: Distribution of (log) nighttime lights: 2014 vs 2019

[35]: #@title CODE: Plot static map of (log) GDP for the initial and final year

fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(12, 8))

# plot for the start year is added.
gdf_lnGDP.plot(

column=str(START_YEAR),
scheme="BoxPlot",
cmap="magma",
edgecolor="darkgrey",
legend=True,
ax=axes[0],
legend_kwds={"bbox_to_anchor": (0.88, 0.30)},

)
cx.add_basemap(

ax=axes[0],
crs=gdf_lnGDP.crs.to_string(),
source=cx.providers.CartoDB.DarkMatterNoLabels,
attribution=False,

)

cx.add_basemap(
ax=axes[0],
crs=gdf_lnGDP.crs.to_string(),
source=cx.providers.CartoDB.DarkMatterOnlyLabels,
attribution=False,

)

# plot for the end year is added.
gdf_lnGDP.plot(

column=str(END_YEAR),
scheme="user_defined",
classification_kwds={"bins": [12.02, 16.57, 18.59, 19.61]},
cmap="magma",
edgecolor="darkgrey",
legend=True,
ax=axes[1],
legend_kwds={"bbox_to_anchor": (0.88, 0.30)},

)
cx.add_basemap(
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(a) Log GDP in 2014
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(b) Log GDP in 2019
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Figure 5: Distribution of (log) GDP: 2014 vs 2019

ax=axes[1],
crs=gdf_lnGDP.crs.to_string(),
source=cx.providers.CartoDB.DarkMatterNoLabels,
attribution=False,

)

cx.add_basemap(
ax=axes[1],
crs=gdf_lnGDP.crs.to_string(),
source=cx.providers.CartoDB.DarkMatterOnlyLabels,
attribution=False,

)

plt.tight_layout()
axes[0].axis("off")
axes[1].axis("off")
axes[0].set_title("(a) Log GDP in " + str(START_YEAR))
axes[1].set_title("(b) Log GDP in " + str(END_YEAR))
plt.savefig("figures/fig_map_lnGDP.png", dpi=300, bbox_inches="tight")
plt.show()

[35]: Output in Figure 5

5.1.2 Regional time series

In this section, we study the temporal evolution of NTL for each region. As we also have
the time series of GDP, we can compare their trends and have a first visual validation of
the usefulness of NTL for predicting economic activity over time. The plotting library
Plotly Express is particularly useful for interactively exploring time series when the
dataset is organized as a long-form dataframe. In the code below, we use the previously
constructed long-form dataframe (df), which contains both NTL and GDP data. After
indicating the x and y variables, we only need to use the argument color to identify the
regions. After generating the Plotly object, we use the write_image() method to save
the results as a static image. To generate a similar graph for GDP, we only need to
change one argument: y = "lnGDP".

[36]: # @title CODE: Plot regional time series of (ln) NTL

fig_ts_lnNTL = px.line(df, x="year", y="lnNTL", color="region")
fig_ts_lnNTL.show()

[36]: Output in Figure 6
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Figure 6: Evolution of (log) nighttime lights in each region

[37]: # @title CODE: Save plotly figure as PNG file

fig_ts_lnNTL.write_image("figures/fig_ts_lnNTL.png")

[38]: # @title CODE: Plot regional time series of (ln) GDP

fig_ts_lnGDP = px.line(df, x="year", y="lnGDP", color="region")
fig_ts_lnGDP.show()

[38]: Output in Figure 7

[39]: # @title CODE: Save plotly figure as PNG file

fig_ts_lnGDP.write_image("figures/fig_ts_lnGDP.png")

Figures 6 and 7 show the time series of NTL and GDP, respectively, on a regional
basis. A preliminary visual examination reveals the similarities and differences between
these two variables for each region. In certain regions, the NTL trends exhibit larger
fluctuations than those of GDP. Due to the possibility of measurement errors in earth
observation data, large fluctuations may require further attention and data processing.
For example, to focus the analysis on long-run trends, one may consider using time-series
filters to remove short-term fluctuations. Overall, this preliminary visual assessment can
provide useful information on the temporal dynamics of economic activity and can be
performed effortlessly using the Plotly Express library.

5.1.3 Scatter plot with linear fit

To study the relationship between nighttime lights (NTL) and GDP, we use the interactive
scatterplot from the Plotly Express library. In addition to the basic arguments of a

Figure 7: Evolution of (log) GDP in each region
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scatter plot (data frame, the x-axis, and the y-axis), the function px.scatter() allows
us to specify other arguments such as hover on name, text on selected observations,
animation frame, and trend line. The animation frame and the trend line options are
particularly informative when analyzing longitudinal (panel) data. When activated, we
can fit a regression line for each time period. Also, when hovering on the regression line,
we can easily obtain regression statistics such as R-Squared, regression coefficients, and
predicted values.

[40]: # @title CODE: Plot the NTL-GDP relationship

df_selected_year = df[df["year"].astype(int) == START_YEAR]

N_LABELLED_REGIONS = 6

quantiles = np.linspace(0, 1, N_LABELLED_REGIONS + 1)
quantiles = df_selected_year["lnNTL"].quantile(quantiles)

# Function to find the closest value to a given quantile
def find_closest_value(quantile_val):

return df_selected_year.iloc[
(df_selected_year["lnNTL"] - quantile_val).abs().argsort()[:1]

]

# Find closest regions to the quantiles
selected_regions = pd.concat([find_closest_value(quantile) for quantile in quantiles])

region_text = selected_regions["region"]

# Create a new column 'selected_region' in df based on the condition
df["selected_regions"] = df["region"].where(df["region"].isin(region_text), pd.NA)

fig_sc_lnNTL_lnGDP = px.scatter(
data_frame=df,
x="lnNTL",
y="lnGDP",
range_x=[2, 16.5],
range_y=[12, 22],
hover_name="region",
text="selected_regions",
animation_frame="year",
trendline="ols",

)

fig_sc_lnNTL_lnGDP.update_traces(textposition="top center")
fig_sc_lnNTL_lnGDP.show()

[40]: Output in Figure 8

[41]: # @title CODE: Save plotly figure as PNG

fig_sc_lnNTL_lnGDP.write_image("figures/fig_sc_lnNTL_lnGDP.png")

Figure 8 shows a strong linear relationship between (log) NTL and GDP. In the year
2014, NTL explained 89% of the regional variation in GDP. Over time, the predictive
power of NTL has remained stable around 90%. The regression coefficient of NTL in
2014 was 0.82, indicating that a 10% increase in NTL is associated with an 8.2% increase
in GDP. Over time, this coefficient has slightly increased. By 2019, a 10% increase in
NTL is associated with an 8.5% increase in GDP. Taken together, these results indicate
that, on a year-by-year basis, nightlights are a useful proxy for economic activity.

5.2 Predicting GDP with nightlights

To evaluate the usefulness of nighttime lights (NTL) for predicting economic activity
(GDP), let us consider the following panel-data model:
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Note: Find the interactive version of this graph at Colab

Figure 8: Relationship between nighttime lights and GDP

log(GDP )it = β log(NTL)it + µi + φt + εit, (1)

where i indexes the regional economies, t indexes the years, µi is a region-specific
effect, φt is a year-specific effect, and εit is random disturbance. Region-specific effects,
µi, capture the influence of unobserved factors that are constant over time. Time specific
effects, φt, capture the influence of unobserved factors that change over time but are
common between regions. The most important parameter in this model is β, which
summarizes the relation between GDP and nighttime lights (NTL). Given the logarithmic
specification of the model, the parameter β indicates by what percentage GDP changes
when the NTL changes by 1%. However, the specification of Equation 1 does not imply
that NTL causes GDP. The parameter β only has a predictive interpretation.

There are multiple ways to estimate the parameter β. Let us consider the following
three basic cases:

log(GDP )it = βPooled log(NTL)it + µ + εit, (2)

log(GDP )i = βBetweenlog(NTL)i + µi + εi, (3)

log(GDP )it − log(GDP )i = βWithin

[
log(NTL)it − log(NTL)i

]
+ φt + εit − εi, (4)

The simplest estimation of β is based on the so-called “pooled” estimator, βPooled.
In this setting (Equation 2), time-specific effects are set to zero and all regions share a
common intercept µ. The parameter βPooled indicates that–for all regional observations–an
increase in NTL of 1% leads to a βPooled % expected increase in GDP. This model implies
that we can expect the same effect of NTL on GDP if there is a 1% difference between
regions or a 1% increase within a region. Thus, an important limitation of Equation
2 is that we cannot disentangle the usefulness of NTL data to predict cross-sectional
differences or time series changes in GDP.

The “between” and “within” estimators are commonly used to evaluate the usefulness
of NTL data for predicting GDP differences and changes within regions, respectively
(Gibson et al. 2021, Zhang, Gibson 2022). In Equation 3, the (log) values of GDP and NTL
are time averaged, and the model is estimated using standard cross-sectional methods.
The parameter βBetween indicates the effect on GDP when NTL changes between regions.
In Equation 4, Equation 3 is subtracted from Equation 1, and, by doing so, unobservable
region-specific effects (µi) are removed from the estimation. The parameter βWithin
indicates the effect on GDP when NTL changes within regions.
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Table 7: The relationship between NTL and GDP

Model Comparison
(1) Pooled (2) Between (3) Within

Dep. Variable lnGDP lnGDP lnGDP
Estimator PooledOLS BetweenOLS PanelOLS
No. Observations 216 36 216
Cov. Est. Clustered Clustered Clustered
R-squared 0.8981 0.9036 0.0002
R-Squared (Within) -0.2222 -0.2256 -0.0119
R-Squared (Between) 0.9036 0.9036 -0.0315
R-Squared (Overall) 0.8981 0.8980 -0.0314
F-statistic 1885.1 318.67 0.0381
P-value (F-stat) 0.0000 0.0000 0.8454

Intercept 8.6348 8.6059 18.260
(27.551) (11.013) (19.150)

lnNTL 0.8433 0.8459 -0.0146
(32.761) (13.153) (-0.1717)

Effects Entity
Time

T-stats reported in parentheses

The Linearmodels package allows us to estimate a variety of panel-data models.
With this package, we can easily compare the previously described estimation approaches.
Consistent with the previous literature (Gibson et al. 2021, Zhang, Gibson 2022), the
results of Table 7 show that the predictive capabilities of NTL vary greatly depending on
the type of data structure. The results of the “between estimator” are encouraging in
terms of statistical significance and predictive power. NTL data predict about 90% of the
variation in GDP data. The regression coefficient indicates that a 10% increase in NTL is
associated with an 8.5% increase in GDP. In contrast, the results of the “within estimator”
do not show a statistically significant relationship between NTL and GDP. Based on
these results, nightlights perform much better in predicting cross-sectional differences
than changes over time.

[42]: # @title CODE: Read panel dataset

df_panel = pd.read_csv("data/tabular/df_NTL_GDP_lnNTL_lnGDP.csv").set_index(
["region", "year"]

)

[43]: # @title CODE: Conduct panel data regressions

table = {
"(1) Pooled": PooledOLS.from_formula(

formula="lnGDP ~ 1 + lnNTL", data=df_panel
).fit(cov_type="clustered"),
"(2) Between": BetweenOLS.from_formula(

formula="lnGDP ~ 1 + lnNTL", data=df_panel
).fit(cov_type="clustered"),
"(3) Within": PanelOLS.from_formula(

formula="lnGDP ~ 1 + lnNTL + EntityEffects + TimeEffects", data=df_panel
).fit(cov_type="clustered"),

}

[44]: # @title CODE: Show comparative regression table

compare(table).summary

5.3 Comparing regional inequality dynamics: GDP vs nightlights

Inter-regional inequality is commonly identified as an important driver of socioeconomic
instabilities, civil unrest, and political polarization (Ezcurra 2019, Rodríguez-Pose 2018).
As a proxy of economic activity, NTL data are also used to understand regional inequality
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and its dynamics (Lessmann, Seidel 2017, Mendez, Santos-Marquez 2021, Mveyange 2018).
In this section, we compare the evolution of regional inequality through the lens of GDP
and NTL. For this purpose, we use two well-known inequality indicators: the Gini index
and the Theil index.

The inequality package allows us to estimate both the Gini and Theil indexes. As
we want to measure regional inequality for each year, we first need to define a function
that computes regional inequality for each year within our dataset. Before applying these
functions, we need to define a string-type vector that contains the time horizon of the
analysis. The following code accomplishes these tasks.

[45]: # @title CODE: Define function: Gini index by column

def gini_by_col(column):
return inequality.gini.Gini(column.values).g

[46]: # @title CODE: Define function: Theil index by column

def theil_by_col(column):
return inequality.theil.Theil(column.values).T

[47]: # @title CODE: Define time index

years = np.arange(START_YEAR, END_YEAR + 1).astype(str)

Next, we apply these functions to the wide-form datasets: gdf_lnGDP and gdf_lnNTL.
Four new datasets are created: gini_lnGDP, gini_lnNTL, theil_lnGDP, theil_lnNTL.
The content and layout structure of these data can easily allow for further data processing
or visualization.

[48]: # @title CODE: Calculate Gini index by column

gini_lnGDP = gdf_lnGDP[years].apply(gini_by_col, axis=0).to_frame("Gini_lnGDP")
gini_lnNTL = gdf_lnNTL[years].apply(gini_by_col, axis=0).to_frame("Gini_lnNTL")

[49]: # @title CODE: Calculate Theil index by column

theil_lnGDP = gdf_lnGDP[years].apply(theil_by_col, axis=0).to_frame("Theil_lnGDP")
theil_lnNTL = gdf_lnNTL[years].apply(theil_by_col, axis=0).to_frame("Theil_lnNTL")

Figures 9 and 10 provide a comparative visualization of the evolution of regional
inequality, both in terms of nightlight luminosity (NTL) and economic activity (GDP).
This comparative analysis indicates that, when measured against the regional disparities
in GDP, the luminosity patterns reveal a higher degree of regional inequality. Specifically,
Figure 10 shows that the inequality in NTL was about 1.83 times higher than the inequality
in GDP in 2014. By 2019, this inequality ratio has been reduced to just above 1.76 times.
From the perspective of the Theil inequality index, Figures 11 and 12 also indicate that
the regional inequality in luminosity is higher than the regional inequality in GDP.

Researchers should be careful when interpreting the differences between NTL and
GDP. Both types of data are subject to measurement errors. In particular, in the context
of developing countries, GDP data can suffer from incomplete coverage, price distortions,
and political distortions. Even higher-quality nightlights can suffer from ephemeral lights,
background noise, and other measurement errors. Therefore, understanding the magnitude
of these errors is crucial in drawing conclusions about the disparities in regional economic
activity.

[50]: # @title CODE: Plot Gini index dynamics of (ln) GDP and NTL

df_gini = pd.merge(gini_lnGDP, gini_lnNTL, left_index=True, right_index=True)
df_gini.plot()
plt.ylabel("Gini index")
plt.savefig("figures/fig_ts_gini.png")
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Figure 9: Regional inequality dynamics of GDP and NTL based on the Gini index
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Figure 10: Gini-based inequality ratio between NTL and GDP

[51]: # @title CODE: Plot inequality ratio (NTL/GDP) based on the Gini index

df_gini["Gini_Ratio"] = df_gini["Gini_lnNTL"] / df_gini["Gini_lnGDP"]
df_gini["Gini_Ratio"].plot()
plt.ylabel("Gini Log NTL / Gini Log GDP")
plt.savefig("figures/fig_ts_giniRatio.png")

[52]: # @title CODE: Plot Theil index dynamics of (ln) GDP and NTL

df_theil = pd.merge(theil_lnGDP, theil_lnNTL, left_index=True, right_index=True)
df_theil.plot()
plt.ylabel("Theil index")
plt.savefig("figures/fig_ts_theil.png")

[53]: # @title CODE: Plot inequality ratio (NTL/GDP) based on the Gini index

df_theil["Theil_Ratio"] = df_theil["Theil_lnNTL"] / df_theil["Theil_lnGDP"]
df_theil["Theil_Ratio"].plot()
plt.ylabel("Theil Log NTL / Theil Log GDP")
plt.savefig("figures/fig_ts_theilRatio.png")

6 Concluding remarks

The increasing availability of satellite nighttime lights can foster the monitoring of
economic activity, especially in countries with limited official statistics. Luminosity at
night is positively correlated with GDP and other economic measures across countries
and subnational regions. However, satellite images can still present challenges that affect
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Figure 11: Regional inequality dynamics of GDP and NTL based on the Theil index
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Figure 12: Theil-based inequality ratio between NTL and GDP

their application. A careful researcher must be aware of the magnitude of noise and
measurement errors inherent in this kind of data.

Measurement errors in NTL data can arise from multiple sources, including ephemeral
lights, sensor calibration issues, blurring effects, thresholding, and angular variations in
satellite detection. Despite these concerns, there is a rapidly expanding body of literature
that offers improved data products and novel tools to use these images effectively. This
notebook introduced some of those data and tools to encourage further exploration and
discussion of the measurement of regional economic activity.

In this notebook, we presented a user-friendly approach for analyzing satellite NTL
images in a cloud-based Python environment. When using these data, one needs to
interactively explore space-time patterns, as NTL may require additional cleaning and
processing. In particular, when using NTL data to predict economic activity, one must
note the difference between cross-sectional and time-series predictions. NTL data has
been shown to perform much better with the former. Another application worth exploring
is the measurement of regional inequality dynamics. Using multiple inequality measures
is recommended to confirm regional inequality trends.

Links to the computational notebook

• Short link: https://bit.ly/project2022p
• Full link: https://colab.research.google.com/github/quarcs-lab/project2022p/blob/-

master/project2022p_notebook.ipynb
• Github repository: https://github.com/quarcs-lab/project2022p
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Appendices

A. Zonal statistics

A.1 Main logic

Let us consider the code inside this loop:

[54]: for year in range(START_YEAR, END_YEAR + 1):
# The raster file of the given year is loaded
raster_file = load_raster(year)

# The mask is applied, and then the aggregator operation is performed for computing
# the aggregate radiance.
statewise_agg_ntl = polygons_files.geometry.apply(geom_mask,

dataset=raster_file).apply(AGGREGATE_OPERATOR)

# The state-wise aggregate radiance of the year is stored in the data frame that
# was initialized earlier.
gdf_NTL[str(year)] = statewise_agg_ntl

In particular, let us evaluate last expression:

[55]: polygons_files.geometry.apply(geom_mask, dataset=raster_file).apply(AGGREGATE_OPERATOR)

The apply method is used to apply a function on all elements of a column of a data
frame. This column contains the polygons of states of India. First, we want to apply the
mask function from rasterio to return a matrix corresponding to a raster file, which has
nodata at all locations outside the polygons of the states.

[56]: def geom_mask(geom, dataset, crop=True, all_touched=True):
masked, mask_transform = mask(dataset=dataset, shapes=(geom,), crop=crop,

all_touched=all_touched)
return masked

For example:

[57]: geom_mask(polygons_files.geometry[0])

Applies to the first polygon and returns a matrix with nodata outside the first polygon;
hence

[58]: polygons_files.geometry.apply(geom_mask)

Applies to all polygons.
Second, after attaining the list of matrices with nodata outside the polygons, we want

to apply the AGGREGATOR_OPERATOR to get the aggregate the light inside the polygons.
For example:

[59]: AGGREGATE_OPERATOR(geom_mask(polygons_files.geometry[0]))

Since AGGREGATE_OPERATOR = np.ma.sum (by default), this returns the sum of light
of the first polygon, hence

[60]: polygons_files.geometry.apply(geom_mask).apply(AGGREGATE_OPERATOR)

Returns the sum of light of all polygons.

A.2 geom_mask function

We want to apply the mask function from rasterio on all elements of a pandas data
frame column using apply, however, we need to pass additional arguments. For this, we
create a wrapper function called geom_mask, which calls mask and passes the additional
arguments. Additionally, mask returns two values, we only need the first one, hence
geom_mask is used to select only one.
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A.2.1 Positional arguments

The function has two positional arguments; geom and dataset.

A.2.2 Keyword arguments

There are two keyword arguments, crop and all_touched.
The crop = True is essential. It is used to crop the output matrix to the extent of

the polygon. This substantially reduced the memory requirement of the program.
The second keyword argument, all_touched = True tells the mask function to include

pixels which are touching boundaries. If false, the function will include a pixel only if its
center is within the boundaries, or if it is selected by Bresenham (1965) line algorithm.
For most polygons in our case, all_touched = False will produce similar results. The
difference would be noticeable for states that contain islands.

A.3 For loop

The iterator in the loop is used for two reasons. First, it is used to open the raster file
corresponding to a year.

[61]: raster_file = load_raster(year)

Second, it is used to create a column to store the state-wise sum of lights

[62]: gdf_NTL[str(year)] = statewise_agg_ntl

Hence, for each raster file, the state-wise sum of lights is computed and stored in a
column named year.

B. Folder structure

The notebook’s root directory is organized into three primary folders: data, figures,
and tables. These folders are created during the execution of the notebook.

• data: Contains all input data that is downloaded during the execution of the
notebook.

– raster: Contains the VIIRS nighttime lights raster files.
– tabular: Contains state-level GDP data for India (df_GDP_India36.csv), used

as ground truth. During processing, the file df_NTL_GDP_lnNTL_lnGDP.csv is
saved in this directory. It contains a dataframe with logs of aggregate nighttime
lights and GDP of each state from the start year to end year.

– vector: Contains the geojson files. gdf_india36.geojson, which is down-
loaded, contains the shape of each state of India. During processing, the
following files are saved: gdf_lnGDP.geojson, gdf_lnNTL.geojson, and
gdf_NTL.geojson. These contain state-wise log GDP, log aggregate nighttime
lights, and aggregate nighttime lights, respectively.

• figures: Stores all figures generated during notebook processing.
• tables: Stores all tables generated during notebook processing.

C. Harmonized nighttime lights

Li et al. (2020) have constructed a harmonized annual nighttime lights dataset by
combining the DMSP-OLS and the VIIRS datasets. This newly extended data set is useful
because it provides a long-term series of data that is often required to study long-term
changes in economic activity. Harmonized nighttime lights from 1992 to 2021 are available
from the following figshare repository: https://doi.org/10.6084/m9.figshare.9828827.v7.
The authors have made data downloading easy and accessible. The following code block
downloads and extracts the images.

[63]: from io import BytesIO # This in a standard library.

# Define the URL of the zip file
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url = "https://figshare.com/ndownloader/articles/9828827/versions/7"

# Send an HTTP GET request to the URL
response = requests.get(url)

# Check if the request was successful (status code 200)
if response.status_code == 200:

# Read the content of the response as bytes
zip_content = BytesIO(response.content)

# Extract the zip file
with zipfile.ZipFile(zip_content, 'r') as zip_ref:

# You can list the files in the zip file if needed
zip_ref.printdir()

# Extract the files to a directory (e.g., 'my_extracted_files/')
zip_ref.extractall(RASTER_DIRECTORY)

print("Zip file has been successfully extracted.")
else:

print("Failed to retrieve the zip file. Check the URL and your internet connection.")

The load_raster function in the notebook can be replaced by the following for easily
loading the images.

[64]: def load_raster(year):
"""
Load a raster file based on the provided time identifier.

Parameters:
-----------
year : int

Returns:
--------
rasterio.io.DatasetReader
An opened raster file dataset ready for further operations.

Example:
--------
>>> raster_2014 = load_raster(2014)
>>> type(raster_2014)
<class 'rasterio.io.DatasetReader'>

Notes:
------
Modify the path in the function if your file structure
or naming convention differs.
"""
raster_path = f"{RASTER_DIRECTORY}/Harmonized_DN_NTL_{year}*"
return (rasterio.open(glob.glob(raster_path)[0]))

By changing the downloading and loading code, one can use the harmonized nighttime
lights dataset without other changes.

Note: When using this dataset, keep radiance threshold as 63 in Figure 1.

D. Export tables in TeX

[65]: # @title CODE: Define functions

def save_latex_table(df, filepath, max_rows=None, max_cols=None):
truncated_df = pd.read_html(

df.copy().round(4).to_html(index=False, max_rows=max_rows, max_cols=max_cols)
)[0]
print(truncated_df.astype(str).to_latex(index=False), file=open(filepath, "w"))

[66]: # @title CODE: Save abbreviated zonal statistics table

save_latex_table(gdf_NTL, "tables/gdf_NTL.tex", 10, 7)
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[67]: # @title CODE: Save abbreviated long-form dataset as TeX file

save_latex_table(df, "tables/df.tex", 10, 7)

[68]: # @title CODE: Save abbreviated geospatial dataset as TeX table

save_latex_table(gdf_lnNTL, "tables/gdf_lnNTL.tex", 10, 7)

[69]: # @title CODE: Save abbreviated geospatial dataset of (ln) NTL as TeX table

save_latex_table(gdf_lnNTL, "tables/gdf_lnGDP.tex", 10, 7)

[70]: # @title CODE: Save table in .tex format

print(compare(table).summary.as_latex(), file=open("tables/panel_regression.tex", "w"))

[71]: # @title CODE: Save the summary statistics table

print(gdf_NTL_summary.to_latex(), file=open("tables/gdf_NTL_round.tex", "w"))
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