Prediction models and testing of resilience in regions
Covid19 economic impact in USA counties study case
DOI:
https://doi.org/10.18335/region.v10i1.449Abstract
A significant amount of research has been conducted regarding the resilience of the regions and the factors that contribute to allow them to face challenges, crises, or disasters. The rise of promising sectors like Machine learning (ML) and Artificial Intelligence (AI) can enhance this research using computing power in regional economic, social, and environmental data analysis to find patterns and create prediction models. Through Machine Learning, the following research introduces the use of models that can predict the performance of a region in disasters. A case study of the performance of USA Counties during the Covid19 first wave period of the pandemic and the related restrictions that were applied by the authorities was used in order to reveal the obvious or hidden parameters and factors that affected their resilience, in particular their economic response, and other interesting patterns between all the involved attributes. This paper aims to contribute to a methodology and to offer useful guidelines in how regional factors can be translated and processed by data and ML/AI tools and techniques. The proposed models were evaluated on their ability to predict the economic performance of each county and in particular the difference of its unemployment rate between March and June of 2020. The former is based on several economic, social, and environmental data -up to that point in time- using classifiers like neural networks and decision trees. A comparison of the different models' execution was performed, and the best models were further analyzed and presented. Further execution results that identified patterns and connections between regional data and attributes are also presented. The main results of this research are i) a methodological framework of how regional status can be translated into digital models and ii) related examples of predictive models in a real case. An effort was also made to decode the results in terms of regional science to produce useful and meaningful conclusions, thus a decision tree is also presented to demonstrate how these models can be interpreted. Finally, the connection between this work and the strong current trend of regional and urban digitalization towards sustainability is established.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Charalampos Manousiadis, Eleni Gaki
This work is licensed under a Creative Commons Attribution 4.0 International License.
REGION is an open journal, and uses the standard Creative Commons license: Copyright We want authors to retain the maximum control over their work consistent with the first goal. For this reason, authors who publish in REGION will release their articles under the Creative Commons Attribution license. This license allows anyone to copy and distribute the article provided that appropriate attribution is given to REGION and the authors. For details of the rights authors grant users of their work, see the "human-readable summary" of the license, with a link to the full license. (Note that "you" refers to a user, not an author, in the summary.) Upon submission, the authors agree that the following three items are true: 1) The manuscript named above: a) represents valid work and neither it nor any other that I have written with substantially similar content has been published before in any form except as a preprint, b) is not concurrently submitted to another publication, and c) does not infringe anyone’s copyright. The Author(s) holds ERSA, WU, REGION, and the Editors of REGION harmless against all copyright claims. d) I have, or a coauthor has, had sufficient access to the data to verify the manuscript’s scientific integrity. 2) If asked, I will provide or fully cooperate in providing the data on which the manuscript is based so the editors or their assignees can examine it (where possible) 3) For papers with more than one author, I as the submitter have the permission of the coauthors to submit this work, and all authors agree that the corresponding author will be the main correspondent with the editorial office, and review the edited manuscript and proof. If there is only one author, I will be the corresponding author and agree to handle these responsibilities.