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Abstract. This study quantifies the spillover effects of PM2.5 emissions on emergency
room visits due to respiratory diseases in Chile. We use several spatial panel methods
and models controlling also for the potential endogeneity of air quality. Our estimates
show that the spillover effects are downward biased when this endogeneity is ignored.
Furthermore, using the estimates from our preferred model, we find that about 65 per
cent of the total emergency room visits in Chile are due to PM2.5 emissions generated in
the same municipality, whereas the remaining 35 per cent can be attributed to pollutants
emitted in a different spatial unit. In economic terms, increasing PM2.5 emissions in
one thousand tonnes yields to an increase of USD 98,010 of annual costs for ER health
facilities due to spillover effects, whereas the total costs (considering indirect and direct
effects) amounts to USD 283,855.
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1 Introduction

Several studies across different fields have shown that air quality is highly associated with
mortality and hospital admissions for respiratory and cardiovascular diseases (Brunekreef,
Holgate 2002, Bernstein et al. 2004, Cohen et al. 2005, Kampa, Castanas 2008). This
relationship has gained more attention with accelerating urban development, especially in
developing countries where the negative impacts of air pollution on health are greater
and public resources for health are scarcer compared to developed countries. Most of the
recent studies have focused on atmospheric particulate matter with 2.5 micrometers in
diameter (PM2.5), which is considered one of the most dangerous pollutants for health due
to its capacity to penetrate deeply into the lungs and bloodstream (Pope III et al. 2002,
Xing et al. 2016). According to Brauer et al. (2015), PM2.5 is the most frequent cause
of environment-related deaths worldwide causing approximately 3.1 millions premature
deaths globally in 2010 and 2.1 millions in 2013. Previous studies also suggest that
long-term exposure to PM2.5 increases the prevalence rate of respiratory diseases (Abbey
et al. 1995, Pope III et al. 2002, 2004, Cohen et al. 2005), which in turn increases
hospitalization rates (Ward 2015, Ostro et al. 2008) and household healthcare expenditure
(Yang, Zhang 2018); whereas short-term exposures increase susceptibility to respiratory
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infections (Analitis et al. 2006), heart attack (Dominici et al. 2006, Madrigano et al.
2012), asthma attacks (Zanobetti et al. 2009, Hua et al. 2014, Fan et al. 2016) and acute
bronchitis (Yang et al. 2019).

Most of these studies assume that air pollution has negative impacts only at the same
spatial location. However, geographical units are interrelated resulting in an interregional
diffusion of pollutants to other areas. This is supported by studies showing that pollutants
can travel long distances (Bergin et al. 2005, Fang et al. 2019), and even continents
(Hatakeyama et al. 2001), generating important unintended spatial spillover effects. In
terms of PM2.5, Li et al. (2018) show that this pollutant is the second pollutant component
with the highest level of spatial interdependency in China, whereas Chen et al. (2017),
Chen, Ye (2019), Hao, Liu (2016) and Ma et al. (2016) show that PM2.5 emissions have
significant diffusion effects between neighboring regions.

Given the potential externalities exerted by air pollutants, researchers have tried to
estimate the spatial spillovers of air pollution on public health. For example, Zhang et al.
(2017) estimates that about 73% of the total premature deaths in the world due to PM2.5

are attributable to production activities in the same spatial unit, whereas the remaining
percentage is due to air pollutants emitted in a different region. In China, Chen et al.
(2017) find that an increase of ten thousand tonnes of industrial sulfur dioxide emissions
in a particular city will lead, on average, to an increase in local mortalities from lung
cancer and respiratory diseases of 0.035 and 0.030 per ten thousand persons, respectively,
and a total spillover effect of 0.217 and 1.543 per ten thousand persons in mortalities of all
its neighbors. These results imply that air pollution and its associated effects on health
are a strong motivation to establish more effective air quality regulation. For example,
policies aimed at reducing air pollutants in target regions might decrease emissions in
neighboring regions, exerting unintended but beneficial spillover effects on public health
(Fang et al. 2019).

In this context, this study tries to empirically assess the potential spillover effects of
PM2.5 emissions on emergency room (ER) visits due to respiratory diseases in Chile. In
particular, the questions we try to answer are: is there a strong relationship between
PM2.5 emissions and public health? Is there evidence of spatial spillover effects? If they do
exist, are they substantially large? To answer these questions, we estimate several spatial
panel models for yearly data on ER visits and PM2.5 emissions for 337 municipalities,
controlling for the potential endogeneity of PM2.5 emissions.

We focus on Chile for two reasons. First, air pollution in Chile has reached worrying
levels in the Latin American context. According to the World Health Organization
(WHO), the average level of PM2.5 concentration in Chile is approximately 25 ug/m3 (15
points greater than the recommended air quality standard of 10 ug/m3 annual mean),
placing Chile seventh out of the 33 most polluted countries in America. Furthermore,
according to the 2018 World Air Quality report, Chile has 9 of the 10 most polluted
cities in South America. Although these figures have led the Chilean Government to
implement several prevention and decontamination plans, the air quality in many cities
of the country still exceeds levels established by the WHO. Second, most of the studies
documenting the detrimental effects of air pollution on Chileans’ health have focused
on the most polluted cities located in the central and southern regions of the country.
For example, Ostro et al. (1996) find that a 10-ug/m3 change in daily mean PM10 is
associated with a 1% increase in total daily mortality in Santiago. Sanhueza et al. (2006),
focusing in Temuco which is one of the most highly polluted cities in Chile, find that
PM10 and PM2.5 are statistically correlated with the daily number of deaths, hospital
admissions, and ER visits for cardiovascular, respiratory, and acute respiratory infection
diseases.

This work makes two potential contributions. First, and unlike previous studies in
Chile, this study uses ER visits data for the entire country, which allows us to generalize
our results to whole population. Moreover, it is the first study (to our knowledge) that
analyzes the potential spatial spillover effects of air pollution on Chileans’ health. Second,
we use a spatial panel approach controlling simultaneously for the endogeneity of the
spatial lag of ER visits and PM2.5 emissions. As instruments for PM2.5 emissions, we use
the number of vehicles in each municipality and its higher-order spatial lags.
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2 Methods

2.1 Model formulation and spatial mechanisms

To analyze the spillover effects of air pollution on ER visits, we propose the following
spatial panel data model:

yit = ρ

N∑
j=1

wijyjt + γpit + δ

N∑
j=1

wijpjt + x′
itβ +

N∑
j=1

wijx
′
itθ + µi + τt + uit,

uit = λ

N∑
j=1

wijujt + ϵit,

i = 1, ..., N ; t = 1, ..., T.

(1)

where yit denotes the number ER visits due to respiratory diseases in municipality i in
time t; pit is the amount of PM2.5 emissions, which we presume is endogenous; xit is a
K × 1 vector of exogenous variables whose values vary over both municipalities and time;
µi is a municipality-fixed effect which is meant to control for time-invariant variables
whose omission could bias the estimates; τt is a time-fixed effect which eliminates omitted
variable bias caused by excluding unobserved variables that evolve over time but are
constant across municipalities; wij is an element of the (N ×N) spatial weight matrix W
reflecting the spatial interdependent relationship between different municipalities, so that∑N

j=1 wijyjt captures the number of ER visits for respiratory diseases for i’s neighbors,

whereas
∑N

j=1 wijujt captures the potential spatial autocorrelation in omitted variables

that vary over both municipalities and time;
∑N

j=1 wijpjt and
∑N

j=1 wijx
′
it capture air

pollution and other covariates of i’s neighbors, respectively. Finally, it is assumed that
ϵit ∼ iid(0, σ2

ϵ ).
Different restrictions on the model (1) give raise to different taxonomies of the spatial

relationships between ER visits and air pollution. Setting δ = λ = 0 and θ = 0, we
obtain the Spatial Lag Model (SLM). This model is displayed in Panel (a) of Figure 1,
which considers two municipalities. Under this model, it is assumed that ER visits in
municipality 1, (y1), exerts a spatial externality on the number of ER visits in municipality
2, (y2). If ρ > 0 (ρ < 0), then this spatial externality is positive (negative); that is, the
increase in admissions in emergency rooms due to respiratory problems in municipality 1
generates an increase (decrease) in admissions in municipality 2. ER visits might spread
from municipality to municipality by a variety of mechanisms. First, there exists a
vast literature in epidemiology indicating that disease transmission is inherently spatial,
especially for respiratory diseases such as flu, common cold and pneumonia (Kuebart,
Stabler 2020). For example, individuals have complex spatial routines in their everyday
lives. Thus, it has to be considered that people tend to pass through a variety of places
over time, which increase the likelihood of being infected and/or spread the disease to
distant places (Kulldorff, Nagarwalla 1995, Li et al. 2003). If the transmission follows
a spatial pattern and both the contagion rate and commuting is high, then we should
observe spatial clusters in ER visits, especially in seasons of extreme temperatures.

Another mechanism which is observationally equivalent is the overcrowding effect.
Emergency departments prioritize patients according to their severity such that low-
urgency patients have a longer waiting time. Therefore, waiting times act as an implicit
price ensuring that only patients who are willing to bear the cost will be treated (Sivey
2018). Thus, medical centers facing a situation of high demand or operating at or
near full capacity could cause individuals with high waiting time elasticity to choose
medical centers in neighboring municipalities for urgent treatment, other things equal.
According to Salway et al. (2017) another potential mechanism is ambulance diversion.
Ambulance diversion is a tactic used by hospitals and emergency medical services to solve
the problem of overcrowded emergency departments. For example, if a given municipality
is experiencing high demand for urgent treatment, nearby medical centers might also
experience an increase of demand due to ambulance diversion. These mechanisms are
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Figure 1: Spatial Econometric Models
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relevant in the context of emergency services in Chile, which have been experiencing
problems of congestion for several years (Salway et al. 2017, Becerra et al. 2020). Based
on these theoretical mechanisms, we expect a positive ρ, which is consistent with the
epidemiological hypothesis of contagion of diseases and/or with a potential congestion
effect of emergency room departments.

Setting λ = 0 in Equation (1), we obtain the Spatial Durbin model (SDM) displayed
in Panel (b) of Figure 1. Under this model, air pollution in municipality 1 not only affects
municipality 2’s ER visits through congestion and/or contagion, but also directly because
of the transboundary characteristic of air pollution via δ (Bergin et al. 2005). As we will
discuss later, although δ captures the immediate spillover effect of air pollution (local
effects), if ρ equals zero, we will not be able to capture the potential spillover effects on
more distant municipalities (global effects).

If λ ̸= 0 gives rise to the General Nesting Spatial (GNS) model (Elhorst 2014). This
model helps to control for the potential spatial dependence in the error term, which may
arise because of omitted variables that are correlated across municipalities, as shown in
Panel (c) of Figure 1. Spatial dependence of error terms leads to an inefficiency problem,
but no bias in the estimated parameters if the omitted variables are not correlated with the
included variables. Therefore, although λ does not enter in the computation of spillover
effects, adjusting for spatial dependence in the error term will produce more accurate
inference regarding the direct and indirect effects (LeSage 2014). Finally, if all spatial
parameters are zero (ρ, γ,θ), except for λ, then the model is reduced to the Spatial Error
(SEM) model.
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2.2 Issues with model estimation

2.2.1 Fixed effect vs random effect

The idiosyncratic effect µi in Equation (1) can be estimated by either a fixed (FE) or a
random effects (RE) model. Both methods have advantages and disadvantages discussed
in detail by Elhorst (2014) and Kopczewska et al. (2017). In this study, we opt for the
FE model for two reasons. First, the RE model is not appropriate when space-time data
of adjacent spatial units located in unbroken study areas are used, as in our case (Elhorst
2014, p. 86). Second, the assumption of the RE model of no correlation between the
municipalities’ fixed (µi) effects and the explanatory variables is very restrictive. For
instance, climate and/or geographical characteristics (or any other omitted variable in our
model) may be correlated with emissions: climate may affect heating and cooling needs
which in turn affects the probability of having a respiratory illness (Selden, Song 1994).

The main disadvantage of the FE model is that it does not allow to control for
time-invariant geographical characteristics such as distance to the sea, elevation, distance
to big cities, etc., which are known to be correlated with respiratory diseases. Therefore,
we assume that all these characteristics of municipalities are captured by µi. In any case,
the Hausman tests (displayed later) support our claim that the FE outperforms the RE
model.

2.2.2 Instruments and estimation

Consider the spatial model (1) in matrix form:1

y = ρ (IT ⊗W)y + Xβ1 + Yβ2 + (ıT ⊗ IN )µ + u,

u = λ (IT ⊗W)u + ε,
(2)

where y′ = (y′
1, ...,y

′
T ) and yt is an N × 1 vector in time period t = 1, ..., T ; X′ =

(X′
1, ...,X

′
T ) and Xt is a N ×K matrix of exogenous variables, which can also include

their spatial lag; µ is a N × 1 vector of municipality-fixed effects; Y′ = (Y′
1, ...,Y

′
T ),

where Yt, t = 1, ..., T is an N×H matrix of additional endogenous variables, which in this
context collects pit and

∑N
j=1 wijpjt across municipalities and time; finally ε′ = (ε′1, ..., ε

′
T )

is an NT × 1 vector of error terms. IN denotes an identity matrix of dimension (N ×N),
or dimensions (T × T ) if the subscript T is indicated.

Estimation of model (2) imposes some complications. First, (IT ⊗W)y generates
endogeneity due to simultaneity. Second, both pit and its spatial lag are potentially
endogenous. For example, our measure of PM2.5 emissions is based on self-reported
emissions which might result in a potential problem of attenuation bias. Furthermore,
air quality might be correlated with unobserved variables at the municipality level that
affect individuals’ health, creating an omitted variable bias. Therefore, we need to
instrumentalize both (IT ⊗W)y and Y.

For the identification of the effect of air quality on ER visits, we use the number of
vehicles in a given municipality as an additional pre-determined variable. According to
the Chilean Ministry of Environment, vehicle emissions represent 35-50% of total national
emissions. In terms of the exclusion restriction, we claim that, after taking into account
the amount of PM2.5 emissions, the only way that the number of vehicles can affect ER
visits is through air quality.2

Following Kelejian, Prucha (1998), we use

(X, (IT ⊗W)X,
(
IT ⊗W2

)
X, ..., (IT ⊗Wq)X)

as instruments for (IT ⊗W)y, where X is the set of included exogenous variables. The
intuition behind the instruments is the following: since X determines y, then it must be
true that (IT ⊗W)X,

(
IT ⊗W2

)
X, ... determines (IT ⊗W)y. Furthermore, since X is

assumed to be uncorrelated with ε, then (IT ⊗W)X must be also uncorrelated with ε.

1Note that we have dropped the time-fixed effect, τt, for simplicity in the exposition.
2As suggested by one of the reviewers, the number of vehicles can affect ER visits through other

mechanisms like traffic accidents or urbanization. In our robustness checks section, we also allow for such
possibilities.
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We also assume that Φ is a NT ×R matrix of additional exogenous instruments for Y,
where Φ consists of the number of vehicles. Setting Xf = [X,Φ], the instruments are
given by the linearly independent columns of (Drukker et al. 2013, Kelejian, Piras 2017)
Q =

[
Xf , (IT ⊗W)Xf ,

(
IT ⊗W2

)
Xf , ..., (IT ⊗Wq)Xf

]
.

Following the empirical literature we set q = 2 (Drukker et al. 2013, Kelejian, Prucha
1998, 2010, Fingleton, Le Gallo 2008), so that the matrix of instruments is given by
following subset of Q:

Q∗ =
[
Xf , (IT ⊗W)Xf ,

(
IT ⊗W2

)
Xf

]
LI

, (3)

where LI indicates linearly independent columns of Q∗. We use different estimation
procedures in this work. First, when assuming that air pollution is exogenous, that is
β2 = 0, we can estimate the GNS spatial model (Equation (2)) by Maximum Likelihood
(ML) procedure assuming the full distribution of ε (Elhorst 2014). When β2 ̸= 0, the ML
no longer delivers consistent estimates, so we rely on GMM procedures. The full GNS
model can be estimated via Generalized Spatial Two Stage Least Square (GS2SLS) (see
Kelejian, Piras 2017, chapter 15 for technical specifics). The steps are the following: (1)
estimate a FE effect model using a S2SLS procedure using (3) as instruments; (2) obtain
the residuals from the 2SLS to consistently estimate σ2

ϵ and λ via Method of Moments
using Kapoor et al. (2007)’s equations accordingly; (3) using the consistent estimates of
σ2
ϵ and λ, the model is transformed to account for the spatial correlation in the error

term, and more efficient estimates of the parameters are obtained via 2SLS using (3) as
instruments. Finally, if λ = 0 the model is estimated by the traditional S2SLS.

2.3 Computing direct and indirect effects

Since the estimated coefficients are not directly interpretable (LeSage, Pace 2014b), we
need to compute the spatial spillover effects of air pollution on ER visits, which is primary
objective of this work.

To derive the marginal impacts, we follow LeSage, Pace (2009) and Elhorst (2014).
Assuming that (INT − a (IT ⊗W)) is nonsingular for |a|< 1, the reduced form of model
(2) is given by:

y = S−1Xβ1 + S−1Yβ2 + S−1 (ıT ⊗ IN )µ + S−1C−1ε, (4)

where S = (INT − ρ (IT ⊗W)) and C = (INT − λ (IT ⊗W)). Taking the expectation of
(4) yields:

E(y) = S−1Xβ1 + S−1Yβ2.

Since Y collects both air pollution and its spatial lag, the impact on the expected
value of location j given a change in air pollution in location i, also known as the indirect
effects, is:

∂E(yi)

∂pj
= Gp(W)ij , ∀i ̸= j, (5)

where Gp(W)ij is the i, jth element of the following matrix:

Gp(W) =


∂E(y1)
∂p1

∂E(y1)
∂p2

. . . ∂E(y1)
∂pN

∂E(y2)
∂p1

∂E(y2)
∂p2

. . . ∂E(y2)
∂pN

...
...

. . .
...

∂E(yn)
∂p1

∂E(yn)
∂p2

. . . ∂E(yn)
∂pN

 ,

= (INT − ρ (IT ⊗W))
−1

(INT γ + δ (IT ⊗W)) .

(6)

Note that β′
2 = [γ, δ], where γ represents the coefficient for air pollution and δ denotes

the coefficient for the spatial lag of air pollution in Equation (1).
Equation (5) is known as the indirect effect which reflects that air pollution in a given

municipality not only has a direct or spatial-localized effect on its inhabitants’ ER visits,
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but also in those of neighboring municipalities. It can be noticed from Equation (5) that
every off-diagonal element of (6) represents an indirect effect. Therefore, indirect effects
do not occur if both ρ = 0 and δ = 0 (Elhorst 2014). Furthermore, it is important to
distinguish between global and local indirect effects (LeSage, Pace 2009). Local spillovers
occurs if δ ̸= 0 and represent a situation where the impact of air pollution on individuals’
ER visits falls only on immediate neighbors, dying before they impact municipalities that
are neighbors to the neighbors. Global spillovers occur when ρ ̸= 0 and arise when changes
in the air quality of one municipality impact all municipalities’ ER visits. This applies
even to the municipality itself as the impacts of the air pollutants can pass to its neighbors
and back to the municipality itself. Thus, the simultaneous interactions produced by
global spillovers lead to a scenario where changes in air quality in one municipality set in
motion a sequence of adjustments over time in all municipalities in the sample such that
a new long-run equilibrium arises (LeSage, Dominguez 2012, LeSage, Pace 2014b).

The impact of the expected value of municipality i’s ER visits, given a change in air
pollution for the same municipality is given by:

∂E(yi)

∂pi
= Gp(W)ii, ∀i. (7)

The effect on Equation (7) is known as the direct effect and includes the effect of
feedback loops where municipality i affects municipality j and municipality j also affects
municipality i.

It is important to highlight three important issues. First, if both ρ = 0 and δ = 0,
both global and local effects cannot be separated from each other (Elhorst 2014). Second,
the SLM model has the disadvantage that the ratio between the indirect and direct
effects is the same for all variables considered in the model, which might be unrealistic
in our application. This shortcoming does not occur in the SDM or GNS model. Third,
given that the change of air quality in each municipality implies N2 potential marginal
effects (as shown in Equation (6)), we report the average marginal effects as suggested by
LeSage, Pace (2009). Assuming that our instruments are valid, both the average direct
and indirect marginal effects represent the effects of PM2.5 emissions for the compliers,
i.e., those municipalities whose PM2.5 is affected by the instruments (in our case, the
sub-population of municipalities who would increase their PM2.5 emissions because the
number of vehicles had increased). This is known as the local average treatment effect
(LATE).

2.3.1 Spatial weight matrix

Since pollutants can be transported to geographical locations 1000 kilometers away (Bergin
et al. 2005), or even to other continents (Hatakeyama et al. 2001, Liu et al. 2020), in this
study we chose an inverse distance weighting scheme. Specifically, we assume that:

wij =

{
1
d2
ij

i ̸= j

0 i = j
, (8)

where dij is the distance between municipality i and j. Thus weights are given by the
reciprocal of the distance, such that the larger the distance between municipalities, the
lower the spatial connection.

Instead of using the inverse of the distance, as Chen et al. (2017), we use the inverse
squared-distance since we expect that the neighboring relationships are nonlinear and
decline faster than proportionally to the distance. According to Kopczewska et al. (2017),
this weighting scheme allows for both local and global clusters: it is global because it
captures interactions between all units under the Chilean territory, and it is local because
the spatial links are stronger for closer spatial units. For all the estimations, we use the
row-standardized version of W. This ensures that all weights, wij , are between 0 and 1
and facilitates the interpretation. This also guarantees that the spatial parameters are
comparable between models (Anselin 2001).

In the robustness check section, we also consider the following alternative weight
matrix: (1) the inverse of the distance, where the weights are given by 1/dij , (2) the
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Notes: The values represents the average over 2009-2014 period.

Figure 2: Spatial distribution of ER visits and PM2.5 emissions at municipality level.

10- and 7-closest neighbors for each municipality. We do not consider the simple binary
geographic unit matrix since it is hard to argue that air pollution only affects first order
neighbors. For a similar reasoning see Chen et al. (2017).

3 Data

We use a panel dataset comprising 337 municipalities in Chile over the period 2009-2014.
Our main dependent variable is the yearly number of emergency room visits collected
from the Statistic and Health Information Department (DEIS in Spanish) of the Health
Ministry of Chile. DEIS records daily ER visits in health care facilities of the country that
have an emergency service. Since pollutants have been widely associated with various
diseases related to the respiratory system, we focus on ER visits due to respiratory diseases
coded according to the International Classification of Diseases, 10th Revision (ICD-10).

Panel (a) in Figure (2) shows the spatial distribution of the average number of ER
visits due to respiratory diseases for all ages over the 2009-2014 period. A slightly positive
spatial autocorrelation can be detected: that is, there is a tendency for municipalities to
be surrounded by municipalities with similar numbers of ER visits.

To statistically test this global spatial association, we perform a Moran’s test calculated
from the following formula:

I =
n
∑

i=1

∑
j=1 wij(yi − ȳ)(yj − ȳ)

S0

∑
i(yi − ȳ)2

,

where S0 =
∑

i

∑
j wij . Moran’s I values range from -1 (perfect dispersion) to 1 (perfect

correlation). Positive values indicate positive spatial autocorrelation; that is municipalities
with similar values have a tendency to be spatially clustered; whereas negative values
indicate negative spatial autocorrelation, that is municipalities with high (low) values tend
to be surrounded by municipalities with low (high) values of y. A zero value indicates a
random spatial pattern.

Figure 3, shows the the Moran’s scatterplot for ER visits along with the Moran’s I
and the p-value for the null hypothesis of spatial randomness for each year in the sample.3

The idea of the Moran’s scatterplot is to display the variable for each municipality against
the standardized spatial weight average. Therefore, the Moran’s I is equivalent to the
slope coefficient of a linear regression of Wy on y measured as deviation from their mean.
The results reveal a moderate degree of positive spatial autocorrelation with a Moran’s
I fluctuating between 0.19 and 0.23. For all years, the null is rejected at the 5% level.

3The p-values are computed using Monte Carlo simulation with 999 rearrangement of spatial
configurations.
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Notes: p-values for Moran’s I statistic are based on Monte Carlo simulation using 999 permutations.

Figure 3: Moran’s scatterplots for average ER visits for respiratory diseases: Moran’s I
test and p-value by year.

These results gives us a first insight on the adequacy of including the spatial lag of ER
visits on Equation (1).

PM2.5 emissions are obtained from the database of the Record of Emissions and
Contaminant Transfer (RETC) from the Chilean Ministry of the Environment. The
environmental information associated with each source is collected by different organizations
with environmental competence, which in May of each year must be sent to the central
node of the RETC. All the information declared through RETC comes from different
sectoral systems associated with the self-reporting of point-sources discharges, in addition
to the estimation of air emissions from diffuse sources (road transport, agricultural
burning, forest and urban fires, and residential firewood), which then are validated and
consolidated for each year.

Panel (b) of Figure 2 shows the spatial distribution of PM2.5 emissions in tonne
averaged over the period 2009-2014. A strong cluster of municipalities high emissions
on central and southern part of Chile can be observed. This is further corroborated
by Figure 4, which shows a significant positive spatial autocorrelation according to the
Moran’s I test. Importantly, Puerto Montt, Valdivia, Osorno and Temuco stand out as
the municipalities with the highest levels of emissions.

Following the existing literature (e.g. Chen et al. 2017, Analitis et al. 2006, Brunekreef,
Holgate 2002, Xing et al. 2016, to mention a few) and the availability of data, we control
for the following variables: population, poverty rate, the expenditure on health inversion
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Notes: p-values for Moran’s I statistic are based on Monte Carlo simulation using 999 permutations.

Figure 4: Moran’s scatterplots for average PM2.5 emissions: Moran’s I test and p-value
by year.

and medical human resources, the number of ambulances, medical health facilities and
medical laboratories at the municipal level. All these control variables come from the
Chilean government’s National System of Municipality Indicators (SINIM). The summary
statistics are presented in Table 1.

4 Results

4.1 Models and diagnostic test

Although the most preferred model and estimation procedure should be selected on
theoretical grounds (see LeSage, Pace 2014b, LeSage 2014, LeSage, Dominguez 2012,
Golgher, Voss 2016, for further discussion), we first present several diagnostics and
statistical tests for different models and methods, so that we can focus on the estimated
spillover effects in the next section. In particular, we test: (1) whether a fixed effect model
is more suitable than a model with random effects, 2) what type of spatial structure fits
our data better; and finally (3) the ability of the instruments to deal with the potential
endogeneity of PM2.5 emissions.

Table 2 presents the diagnostic tests for different spatial panel models with FE. Each
model (SLM, SDM, and GNS) is estimated by ML and S2SLS/G2SLS. The extended
S2SLS/G2SLS additionally controls for the endogeneity of PM2.5 emissions (SLM) and
its spatial lag (SDM and GNS model).
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Table 1: Summary Statistics

Variable N Mean Std. Dev. Min Max

Emergency room visits for respiratory disease:
Children < 1 year 2,022 1,298.532 2,458.911 0 20,961
Children 1-4 years 2,022 3,385.774 6,163.631 0 56,526
Adults 15-64 years 2,022 5,506.554 9,505.077 0 71,311
Adults > 65 years 2,022 890.385 1,418.220 0 8,467
All 2,022 13,964.210 24,049.280 0 194,310

Controls:
PM2.5 (tonne) 2,022 1,130.821 2,331.553 0 28,898.720
Poverty rate 2,022 16.288 8.055 0 50.900
Population / 1000 2,022 508.128 866.759 1.340 9,312.110
Expend. health investment 2,022 0.399 2.287 0 38
Expend. medical human resources 2,022 18.274 9.013 0 82.610
Number of ambulances 2,022 2.202 1.861 0 12
Number of health facilities 2,022 0.790 1.513 0 12
Number of medical laboratories 2,022 0.334 0.521 0 4

Instrument:
Number of vehicles 2,022 11,172.770 17,798.620 0 118,830

Notes: Expend. . . . Expenditures. All variables are computed at municipal level.

To discriminate between the FE and RE model, we performed a Hausman test under
the null of no systematic difference between the two set of estimates for the three models
considered: SLM, SDM and GNS model. For each of them, we strongly reject the null
hypothesis with a χ2 test statistic equal to 1317, 271 and 704, respectively. Thus, the FE
is the preferred model based on both theoretical and statistical reasoning.

We also performed Wald tests for testing whether ρ = 0 and/or λ = 0 across all
models and estimation procedures. Looking at Table 2, it can be observed that ρ is
positive and highly significant across all models revealing a positive spatial dependency of
ER visits and corroborating the Moran’s test results, except when the GNS is estimated
by ML. According to Elhorst (2014), the GNS model usually tends to overparameterize
the spatial relationship, resulting in low z-values of the coefficients. Thus, the lack of
statistical significance of λ, together with the erratic behavior of ML estimates, lead us to
discard the GNS model in the following sections in pursuit of a more parsimonious model.

Next, we focus on the selection of the spatial structure following the strategy suggested
by LeSage, Pace (2009) and Elhorst (2010). Starting with the SDM model, we can apply
some restrictions to analyze whether the SLM or SEM model fits our data better. Consider
a SDM model by assuming that λ = 0 in Equation (1), and the following restrictions:

H1
0 :δ = 0,

θk = 0, ∀k = 1, ...,K,
(9)

and

H2
0 :γ + δρ = 0,

θk + βkρ = 0 ∀k.
(10)

If (9) is not rejected, then the SDM can be reduced to the SLM. If (10) holds then the
SDM can be reduced to the SEM. If both restrictions hold, then the SDM is equivalent
to a non-spatial panel model (LeSage, Pace 2009, Elhorst 2010). Table 2 shows that
all tests point towards a SDM model: both tests are strongly rejected, except for the
extended S2SLS model where H2

0 is rejected at the 10% level. These results indicate
that, in general, the fixed-effect SDM model outperforms the SLM and SEM model, even
though we are considering a relatively short period of time.4

4Elhorst (2014) argues that it is often difficult to reject H1
0 when using cross-sectional data or panel

data over a relatively short period of time.
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Now we turn our attention to the analysis of models using additional instruments
(Extended S2SLS/G2SLS). The over-identifying restrictions tests gives a Hansen-Sargan
test statistics equal to χ2

2 = 10.672, χ2
1 = 22.991 and χ2

1 = 27.982 for the SLM, SDM and
GNS model, respectively. The p-value for the SLM model (p-value = 0.223) indicates that
the orthogonality conditions hold strongly, whereas the results for the SDM and GNS
model (p-value = 0.08) indicate that we cannot reject the null at the 5% level. Regarding
the power of the additional pre-determined variables (cars, and its first and second order
lag), we find that the joint F statistics from the first-stage are sufficiently large in both
the SLM and SDM model to reject the null that the instruments are weak. Finally, the
Hausman test of regressors exogeneity allows us to reject the null that PM2.5 (in the
SLM) and both PM2.5 and WPM2.5 (in the SDM) are not correlated with the error term,
suggesting that both variables are indeed endogenous.

In summary, statistical tests cast doubt on the suitability of the GNS model and
favor the SDM model. There is also strong evidence that the RE model’s estimates are
inconsistent. Finally, the tests carried out show that: (1) both PM2.5 emissions and their
spatial lag are endogenous5; (2) the instruments used have sufficient power; and finally
(3) there is moderate evidence that the instruments are valid.6

4.2 Spillover effects of PM2.5 emissions on ER visits

Given that our main interest is in spatial spillover effects, we report the direct, indirect
and total effects of PM2.5 emissions on the number of admissions to ERs due to respiratory
diseases.7 The models’ point-estimates are presented in Table A.1.

Table 3 shows the average cumulative direct, indirect and total effect of PM2.5

for the SLM and SDM models using the spatial panel FE estimator.8 To show the
consistency of the results, we also report the average effects using the ML, S2SLS and
the extended S2SLS method. The standard errors in all the specifications and models
are computed simulating the distribution of the direct and indirect effects using the
estimated asymptotic variance-covariance matrix as proposed by LeSage, Pace (2009).
In particular, we use 50,000 simulated parameter drawn from the multivariate normal
distribution and compute Equations (5) and (7) using the following Leontief approximation:
(INT − ρ(IT ⊗W))−1 ≈

∑∞
i=0(ρW)i.

It is important to recall that these average effects should be interpreted as the changes
in ER visits that would take place in the long-run as all changes—due to the simultaneous
changes in the PM2.5 emissions and ER visits—reach a new equilibrium (see Elhorst
2014).9 These cumulative effects measure the average impact on all municipalities that
arise from changes in the PM2.5 emissions in each spatial unit.

Considering either the ML or S2SLS estimates, the direct and indirect effects of PM2.5

emissions show the expected positive sign when the SLM or SDM model are fitted to our
data. Both models show very similar direct effects, whereas the indirect effects are lower
when the S2SLS method is used (columns 2 and 3). Another noticeable difference is that
the average indirect effect is statistically insignificant when they are obtained from the
SLM model.

When endogeneity of PM2.5 is taken into account (columns 5 and 6), the results reveal
interesting findings. First, the indirect effects of the SDM model become significant at
the 10% (p-value = 0.08). Second, the average effects are higher when both PM2.5 and its
spatial lag are instrumentalized. For example, considering just the total (LATE) effects,

5However, this result depends on the validity of our instruments
6Since we fit an overidentified model, it is important to highlight that rejection of over-identification

tests does not mean that instruments are invalid as all could be valid but give different compliers
populations.

7The partial changes of the rest of the variables are available upon request
8All the estimations were carried out using the splm package in R (Millo, Piras 2012).
9As suggested by one of the reviewers, we also estimated a Dynamic SDM with FE assuming that

PM2.5 is exogenous as in Elhorst (2014). The results (available upon request) show that the point-estimate
for ρ is 0.379, which is higher than our estimates in A.1. The point-estimate for Wyt−1 is negative and
significant, indicating that an increase in ER visits in neighboring municipalities in the previous year
reduces ER visits in each municipality in the current year. The point-estimates for PM2.5 and WPM2.5

are not significant, which casts doubt as to the exogeneity of air pollution.
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Table 3: Effects of PM2.5 on ER visits due to respiratory diseases

ML S2SLS Extended S2SLS

Effects SLM SDM SLM SDM SLM SDM

Direct 1.857 2.164 1.812 2.169 1.837 3.379
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Indirect 0.816 0.875 0.503 0.606 0.543 1.782
(0.000) (0.107) (0.000) (0.268) (0.001) (0.088)

Total 2.673 3.038 2.315 2.775 2.380 5.161
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Notes: These results should be interpreted as the average impact of increasing PM2.5 in one tonne on the
number of ER visits due to respiratory diseases. The effects are computed using the estimated coefficients
from a FE model. The Extended S2SLS method controls for the endogeneity of PM2.5 (SLM) and its
spatial lag (SDM). The estimated partial effects are computed using the 50,000 draws from the estimated
asymptotic variance-covariance matrix of the coefficients as proposed by LeSage, Pace (2009). Simulated
p-value in parenthesis.

the SDM estimates under the Extended S2SLS are 86% (5.161 vs 2.775) higher than
the S2SLS estimates. Since the emissions are self-reported, this result suggests that a
measurement-error problem might exist, implying that ignoring the endogeneity of air
quality may lead to underestimating the total effects.

Considering the extended S2SLS estimates, the average estimates imply that increasing
PM2.5 emissions has a positive direct, indirect and total impact on the ER visits. The
positive direct effect indicates that an increase in own-PM2.5 emissions is associated with
increased ER visits due to respiratory diseases. The magnitude of the effect also indicates
that a one tonne increase in PM2.5 emissions is associated with an increase of 3.4 ER
visits, on average, considering the potential feedback effects. In other words, an increase
of about 1000 tonnes (the average of emissions in the sample) would imply that ER visits
would increase by about 3,400, on average. Since the coefficient for PM2.5 is 3.359 and
the direct effect is 3.379, the feedback effect amounts to 0.0204.

The indirect effects are found to be 0.543 (SLM) and 1.782 (SDM), respectively,
accounting for approximately 23% and 35% of the total effect. This difference between
the SLM and SDM can be explained by two factors. First, the SDM also includes local
average effects. Second, the SLM has the restriction that the ratio between the indirect
and direct effects is the same for every explanatory variables. Thus, the SLM might be
unnecessarily rigid to model spillover effects adequately (Elhorst 2010). The positive
indirect effects show that, on average, increasing PM2.5 emissions in municipality i leads
to higher ER visits not only in that municipality itself but also in that of its neighboring
municipalities. Taking into consideration the SDM estimates, an increase of one thousand
tonnes in PM2.5 emissions in a municipality leads to an increase of 1,728 ER visits of all
its neighboring municipalities due to respiratory diseases.

Summarizing, our results show that PM2.5 emissions have a significant negative effect
on public health. Furthermore, the direct, indirect and total effects of air pollution can
be underestimated when endogeneity is not taken into account. Moreover, and unlike
Chen et al. (2017), we found that the direct effects are larger than the indirect effects.
Using the estimates from our preferred model, we find that about 65% of total PM2.5-
related emergency room visits in Chile are due to PM2.5 emissions generated in the same
municipality, whereas the remaining 35% can be attributed to pollutants emitted in a
different spatial unit.

4.3 Policy implications

What are the economic impacts of PM2.5 emissions on ER health facilities? Although
knowing the impacts of air quality on public health and its spillover effects is useful,
it would also be interesting to translate these estimates into terms of monetary costs.
Considering that the cost per person in ER services is approximately USD 55, our average
estimates from the SDM model imply that an increase of one thousand tonnes in PM2.5
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emissions in all municipalities would produce an average annual cost of USD 283,855
(approximately 20% of the municipalities’ average annual health expenditures), holding
other factors constant, from which USD 98,010 (35%) corresponds to spatial spillover
effects.

The previous figures represent the expected average effects on monetary costs and
ER visits if all municipalities increased their PM2.5 emissions by one tonne. However,
policy makers might be interested in applying a certain policy to reduce PM2.5 emissions
in those municipalities with a greater potential impact. A potential solution would be to
select the municipality with the greatest total impact, such that resources are spent in
the most efficient way after considering both spatial spillover and feedback effects.

To find such municipalities, we compute the total impact from an observation (Kelejian
et al. 2006, LeSage, Pace 2009, Anselin, Le Gallo 2006, Golgher, Voss 2016), which is
computed as the sum across the jth column of Gp. Each of these j-values represent the
total impact over all municipalities’ ER visits from increasing the PM2.5 emissions by one
tonne in the jth municipality.

Figure 5, shows the ranking of the first 20 municipalities with the highest total impact
using the estimates from the SDM. Panel (a) and (b) shows the total impact from each
municipality assuming that PM2.5 emissions are exogenous and endogenous, respectively.
The first important result is that the spillover effects emerging from each municipality are
larger when we control for the endogeneity of PM2.5 emissions, which is in line with the
results from the previous section. For example, the effects emanating from San Ramón
municipality is approximately 7.4: twice as high as the effects when PM2.5 emissions are
considered exogenous. This is because the effects depend on the strength of the spatial
dependence measured by ρ, and the magnitude of the parameters γ and δ in Equation
(1). These parameters are higher when controlled by the potential endogeneity of air
pollution; especially γ and δ (see Table A.1).

Considering the cost per person in ER services, reducing PM2.5 emissions in San
Ramón municipality by about one thousand tonnes would imply an average annual cost
reduction of about USD 407,000 considering both the effects in the same municipality and
the spillover effects. This cost reduction would be USD 357,500 if the same policy with
the same expected result in terms of emissions reduction is applied to the municipality of
Cerrillos.

A surprising result is that the municipality with the highest total impact is not that
with the highest level of emissions. In fact, all the municipalities in Figure 5 belong to
the Metropolitan Region, which captures around 40% of the total Chilean population and
is located in the center of the country. However, it should be noted that the magnitude
of the spatial spillovers also depend on the position of the municipality in space and the
degree of connectivity among municipalities represented by W (LeSage, Pace 2009).

5 Robustness checks

In this Section, we provide two additional robustness checks to previous results. First,
we examine the sensitivity of the marginal impacts to variants of W. Then, we analyze
whether heterogeneous effects exist in the relationship between PM2.5 and ER visits
considering different age-groups. Finally,

Table 4 shows the direct, indirect and total effects using the following spatial weight
matrices: (1) inverse-distance, (2) 10-nearest neighbors, and (3) 7-nearest neighbors.
Column (4) provides a specification where WX and Wy are modeled using the squared-
inverse distance (dense) matrix and 10-nearest neighbors (sparse) matrix, respectively.
This latest specification is intended to limit the spatial scope of ER visits to municipalities
nearby, while at the same time allowing PM2.5 to have more far-reaching local spatial
effects. The estimates come from a SDM model with fixed effects using the extended
S2SLS method.

The average direct effects are very close among the different spatial connectivity
structures, ranging from 2.78 to 3.76, and highly statistically significant. These estimates
are also similar to our preferred model (column 6 of Table 3). Thus, the marginal direct
impacts are not overly sensitive to alternative weight matrices.
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(a) Assuming air pollution as exogenous
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(b) Assuming air pollution as endogenous
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Notes: This graph shows the first 20 municipalities with the highest total impacts using the estimates
from the SDM model. The impacts are computed as the sum across the jth column of Gp

Figure 5: Municipalities that generates the higher total impacts.

On the other hand, the indirect effects are more sensitive to spatial structure. The
magnitudes are greater when more dense matrices are considered. For example, the average
indirect effects using the inverse-distance matrix is 3.074 and statistically significant at
5%, which is greater than the indirect effect using the squared inverse-distance matrix.
This result is expected since the inverse matrix does not assume that the neighboring
relationship declines faster than proportionally, so that it captures global effects more
than local ones. The 10-nearest neighbors matrix produces an average indirect effect
closer to the SDM model using the squared-inverse distance, but it is estimated with
less precision. Finally, the spillover effects are reduced significantly when the 7-nearest
neighbors matrix is assumed. These results agree with the LeSage, Pace (2014a)’ results
in the sense that the indirect effects for models considering more neighbors are generally
higher and that the marginal direct impacts should not be too sensitive to the spatial
connectivity imposed.

We also use the J-test proposed by Kelejian, Piras (2016) for panel models. It is
important to emphasize that, although informative, the J-test was not developed in
the context of spatial models with additional endogenous variables. The model under
the H0 is our SDM-extended S2SLS in Table 3, whereas the alternative models H1 are
those estimated in each column of Table 4. At the 5% level, the J test is not able to
reject the model under the null since the Chi-squared variables are lower than the critical
value 3.841. These results corroborate previous studies showing that matrices based on
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Table 4: Sensitivity of partial effects to different spatial weight matrices

Inverse 10-nearest 7-nearest 10-nearest neighbors
distance neighbors neighbors & squared-inverse distance

Direct 3.222 3.239 3.761 2.777
(0.000) (0.000) (0.000) (0.000)

Indirect 3.074 1.607 0.479 2.321
(0.010) (0.110) (0.649) (0.008)

Total 6.295 4.846 4.239 5.098
(0.000) (0.000) (0.000) (0.000)

J-test (χ2
1) 2.662 3.342 2.982 3.328

Notes: These results should be interpreted as the average impact of increasing PM2.5 in one tonne on the
number of ER visits due to respiratory diseases. The effects are computed using the estimated coefficients
from a SDM model with fixed effects using the Extended S2SLS method. The estimated partial effects
are computed using the 50,000 draws from the estimated asymptotic variance-covariance matrix of the
coefficients as proposed by LeSage, Pace (2009). Simulated p-value in parenthesis.

Table 5: Effects of PM2.5 on ER visits due to respiratory diseases for age-groups

< 1 year 1-4 years 15-64 years > 64 years

Effects SLM SDM SLM SDM SLM SDM SLM SDM

Direct 0.210 0.455 0.488 1.015 0.594 0.924 0.136 0.241
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Indirect 0.089 -0.013 0.140 0.111 0.162 1.230 0.055 0.031
(0.001) (0.936) (0.001) (0.695) (0.003) (0.002) (0.000) (0.667)

Total 0.299 0.442 0.628 1.126 0.755 2.154 0.191 0.272
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Notes: These results should be interpreted as the average impact of increasing PM2.5 in one tonne on the
number of ER visits due to respiratory diseases. The effects are computed using the estimated coefficients
from a SDM-FE model using the Extended S2SLS method. The estimated partial effects are computed
using the 50,000 draws from the estimated asymptotic variance-covariance matrix of the coefficients as
proposed by LeSage, Pace (2009). Simulated p-value in parenthesis.

distance perform better than more restrictive spatial connectivity matrices when it comes
to modeling the spillover effects of air pollution (see for example Cheng et al. 2017, Chen
et al. 2017).

The literature shows that the effects of PM2.5 on health are heterogeneous. For
example, individuals with pre-existing lung or heart disease, as well as elderly people
and children are particularly more vulnerable to air pollutants. To analyze the potential
heterogeneous effect of PM2.5 on ER visits, we re-estimate the SDM model by the extended
S2SLS using the ER visits of: infants, children aged 1-4, adults aged 14-64 and adults
age 64 and over as the dependent variable.

Looking at Table 5, we can observe that for all age groups, the total average effects
are positive and highly significant: a one thousand tonne increase in PM2.5 would increase
ER visits of infants, children aged 1-4, adults aged 14-64 and adults age 64 and over
by about 442, 1126, 2154 and 272, respectively, under the SDM model. These findings
corroborate previous findings for Chile (Sanhueza et al. 2009, Cakmak et al. 2007, Ostro
et al. 2008). With regards to the average indirect effects, substantial spillover effects are
only found for adults aged 14-64 and children aged 1-4, but are only significant for the
former. Therefore, the findings from column 6 of Table 3 are mainly driven by adults
aged 14-64.10

10One of the reviewers suggested that our instruments (the number of vehicles and their spatial lag)
might be correlated with variables such as car accidents and the level of urbanization. Given this concern,
we re-estimated our Extended S2SLS model including the number of ER visits due to car accidents and
its spatial lag as additional covariates, along with density (as a proxy for urbanization) and its spatial
lag to control for urbanization. The results (available upon request) show that the point-estimates for ρ
and PM2.5 are reduced, whereas the estimate for WPM2.5 increases and turns out significant.
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6 Conclusion

PM2.5 has been considered one of the most dangerous pollutants to human health due to
its ability to penetrate deeply into lungs and bloodstream, causing various diseases related
to the respiratory and circulatory system. Furthermore, the literature has shown that
this pollutant has the ability to travel large geographical distances, producing negative
effects on public health not only in the city where the pollution is emitted, but also in
more distant cities. Not taking into consideration these spillover effects might lead to
under- or overestimation of the effects of environmental or economic policies that are
spatially blind.

In this paper, we contribute to the empirical literature on the effects of air pollution
on public health by quantifying the direct and indirect effects of PM2.5 emissions on
emergency room visits due to respiratory disease in Chile. To do so, we use different
spatial panel models and methods for 337 municipalities over the period 2009-2014. To
give more accurate estimates of the effect of air quality on public health, we use an
instrumental variables approach using the number of vehicles in each spatial unit as
exogenous variability.

Our results provide evidence that the marginal partial effects are downward-biased
when not controlling for the potential endogeneity of air pollution. This result supports
both that emissions may be measured with error or that there may be omitted variables
that are negatively correlated with municipal emissions. According to our results, the
bias is higher for the average indirect effects than the direct effects: the average direct
and indirect effects are respectively 1.5 and 3 times lower when PM2.5 emissions are
considered as exogenous. Assuming both that our instruments are valid and that a high
proportion of municipalities are compliers, our results suggest that estimates based on
traditional spatial panel data are likely to be misleading.

In addition, the magnitude of our preferred model indicates that increasing PM2.5

emissions by one thousand tonnes would imply, on average, a total increase of approximately
5161 ER visits due to respiratory diseases, holding time-invariant idiosyncratic effects
and other relevant factors constant. Of this total (LATE) change, 1782 ER visits are
due to the spillover effects, which represents 35% of the total effect. The robustness
checks show that the direct effects are relatively unvarying under different spatial weight
specifications, whereas the indirect are higher and statistically significant when spatial
connectivity is based on the inverse-distance between municipalities rather than limiting
the spatial association to a certain number of neighbors.

When considering age-group specific ER visits, the estimated average impacts reveals
that an increase of PM2.5 emissions by one thousand tonnes would increase the ER visits
of infants, children aged 1-4, adults aged 14-64 and adults age 64 and over by about 442,
1126, 2154 and 272, respectively. However, substantial spillover effects are only found for
adults aged 14-64 and children aged 1-4.

Although the indirect effects are proportionally lower than the direct effects, they are
still economically significant. For example, the average indirect effects of an increase of
one thousand tonnes of PM2.5 emissions yield to an increase of USD 98,010 of annual costs
for ER health facilities, whereas the total costs (considering indirect and direct effects)
amounts to USD 283,855. Furthermore, we show that policies that aim to reduce PM2.5

emissions would have a greater impact (considering both direct and spillover effects) if they
are applied to municipalities located in the Metropolitan Region. For example, considering
the municipality that generates the highest total effects (San Ramón), reducing the PM2.5

emissions by one thousand tonnes would imply an average annual cost reduction of about
USD 407,000.
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