
Volume 7, Number 2, 2020, R15–R46 journal homepage: region.ersa.org
DOI: 10.18335/region.v7i2.295

A reproducible notebook to acquire, process and
analyse satellite imagery: Exploring long-term urban
changes

Meixu Chen, Dominik Fahrner, Daniel Arribas-Bel, Francisco Rowe1

1 University of Liverpool, Liverpool, UK

Received: 22 December 2019/Accepted: 1 December 2020

Abstract. Satellite imagery is often used to study and monitor changes in natural
environments and the Earth surface. The open availability and extensive temporal
coverage of Landsat imagery has enabled to monitor changes in temperature, wind,
vegetation and ice melting speed for a period of up to 46 years. Yet, the use of satellite
imagery to study cities has remained underutilised in Regional Science, partly due to the
lack of a practical methodological approach to capture data, extract relevant features
and monitor changes in the urban environment. This notebook offers a framework to
demonstrate how to batch-download high-resolution satellite imagery; and enable the
extraction, analysis and visualisation of features of the built environment to capture
long-term urban changes.

Key words: satellite imagery, image segmentation, urbanisation, cities, urban change,
computational notebooks

1 Introduction

Sustainable urban habitats are a key component of many global challenges. Efficient
management and planning of cities are pivotal to all 17 UN Sustainable Development
Goals (SDGs). Over 90% of the projected urban population growth by 2050 will occur in
less developed countries (United Nations 2019). Concentrated in cities, this growth offers
an opportunity for social progress and economic development but it also imposes major
challenges for urban planning. Prior work on urbanisation has identified the benefits of
agglomeration and improvements in health and education, which tend to outweigh the
costs of congestion, pollution and poverty (Glaeser, Henderson 2017). Yet research has
remained largely focused on Western cities (e.g. Burchfield et al. 2006), developing a good
understanding of urban areas in high-income, developed countries (Glaeser, Henderson
2017). Much less is known about the long-term evolution of urban habitats in less
developed countries. Analysis of historical census data exist exploring changes at discrete
points over time such as slum detection (e.g. Giada et al. 2003, Kit, Lüdeke 2013, Kohli
et al. 2016). Less applications can be identified tracking changes in urban settings over a
continuous temporal scale (Ibrahim et al. 2020). This gap is partly due to the lack of
comprehensive and consistent data sources capturing the long-term dynamics of urban
structures in less developed countries.

R15

R16 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

Cities in Asia provide a unique setting to explore the challenges triggered by rapid
urbanisation. The share of urban population in Asia is currently at a turning point
transitioning to exceed the share of rural population. Currently Asia is home to over
53% of the urban population globally and the share of urban population is projected
to increase to 66% by 2050 (United Nations 2019). Developing tools to monitor and
understand the past and current urbanisation process is key to guide appropriate urban
planning and policy strategies.

Recent technological developments can help overcome the paucity in spatially-detailed
urban data in less developed countries. The combination of geospatial technology, cheap
computing and new machine learning algorithms has ushered in an age of new forms of
data, producing brand new data sets and repurposing existing sources. Satellite imagery
represents a key source of information. Photographs from the sky have existed for decades,
but their use in the context of socioeconomic urban research has been limited. Image data
has been hard to process and understand for social scientists. Yet recent developments
in machine learning and artificial intelligence have made images computable and turned
these data into brand new information to be explored by quantitative urban researchers.
Further, satellite data has become more abundant and openly accessible in the past
decade, and offers new possibilities for data exploration through increasing spatial and
temporal resolution. This, together with more computational power being available,
allows to process these data in an efficient and meaningful way.

This notebook illustrates an easy-to-use analytical framework based on Python tools
which enables batch download, image feature extraction, analysis and visualisation of
high-resolution satellite imagery to capture long-term urban changes. Our purpose is
to fill in the absence of a systematic and reproducible framework to acquire, process
and analyse satellite imagery in urban built environment related to the field of Regional
Science. The source of satellite data and administrative boundaries data are from NASA’s
Landsat satellite programme and ArcGIS Online. The Python libraries used in this
notebook are the following:

• Landsat images in Google Cloud Storage: The Google Cloud Storage is accessed
using an API to download Landsat imagery (version used: 0.4.9)

• Matplotolib:A Python 2D plotting library which produces publication quality figures
in a variety of hardcopy formats and interactive environments across platforms.

• Numpy: Adding support for large, multi-dimensional arrays and matrices, along
with a large collection of high-level mathematical functions

• Pandas: Provides high-performance, easy-to-use data structures and data analysis
tools

• GeoPandas: Python library that simplifies working with geospatial data (version
used: 0.6.2)

• Folium: Python library that enables plotting interactive maps using leaflet (version
used: 0.10.0)

• Glob: Unix style pathname pattern expansion

• GDAL: Library for geospatial data processing (version used: 2.4.4)

• Landsat578: Simple Landsat imagery download tool

• L8qa: Landsat processing toolbox (version used: 0.1.1)

• Rasterio: Library for raster data processing (version used: 1.1.3)

• Scikit-image: Collection of algorithms for image processing

• Wget: Pure python download utility (version used: 3.2)

• OpenCV: Library for image processing

• scikit-learn: Machine learning in Python. Simple and efficient tools for data mining
and data analysis.

REGION : Volume 7, Number 2, 2020

https://cloud.google.com/storage/docs/public-datasets/landsat
https://matplotlib.org/contents.html
https://docs.scipy.org/doc/
https://pandas.pydata.org/pandas-docs/stable/
http://geopandas.org/
http://folium.readthedocs.io/en/latest/
https://docs.python.org/2/library/glob.html
https://gdal.org/
https://github.com/dgketchum/Landsat578
https://github.com/mapbox/rio-l8qa/blob/master/README.md
https://rasterio.readthedocs.io/en/stable/
http://scikit-image.org/docs/dev/
https://pypi.org/project/wget/
https://pypi.org/project/opencv-python/
https://scikit-learn.org/stable/index.html

M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe R17

We can import them all as follows:

[1]: %matplotlib inline

#load external libraries

import matplotlib.pyplot as plt

from matplotlib import colors

import pandas as pd

import numpy as np

import geopandas as gpd

import folium

import os, shutil

import glob

import gdal

import wget

from landsat import google_download

from google_download import GoogleDownload

from l8qa.qa import write_cloud_mask

import rasterio

import rasterio as rio

from rasterio import merge

from rasterio.plot import show

from rasterio.mask import mask

from skimage import io,exposure, transform,data

from skimage.color import rgb2hsv, rgb2gray

from skimage.feature import local_binary_pattern

from sklearn.cluster import KMeans

import matplotlib.cm as cm

from sklearn import preprocessing

from rasterio.enums import Resampling

import seaborn as sns

import itertools

wdir= os.getcwd()

The remainder of this paper is structured as follows. The next section introduces the
Landsat satellite imagery, study area Shanghai, and process on how to batch download
and pre-process satellite data. Section 3 proposes our methods to extract different features
including colour, texture, vegetation and built-up from imagery. Section 4 performs a
clustering method on the extracted features, and section 5 interprets the results and gain
insights from them. Finally, section 6 concludes by providing a summary of our work and
avenues for further research using our proposed framework.

2 Data and Study Area

2.1 Landsat Imagery

We draw data from the NASA’s Landsat satellite programme. It is the longest standing
programme for Earth observation (EO) imagery (NASA 2019). Landsat satellites have
been orbiting the Earth for 46 years providing increasingly higher resolution imagery.
Landsat Missions 1-3 offer coarse imagery of 80m covering the period from 1972 to
1983. Landsat Missions 4-5 provides images of 30m resolution covering the period from
1983 to 2013 and Landsat Missions 7-8 are currently collecting enhanced images at 15m
capturing Cirrus and Panchromatic bands, in addition to the traditional RGB, Near-,
Shortwave-Infrared, and Thermal bands. The Landsat 6 mission was unsuccessful due
to the transporting rocket not reaching orbit. Landsat imagery is openly available and
offers extensive temporal coverage stretching for 46 years. Table 1 provides a summary
overview of the operation, revisit time and image resolution for the Landsat programme,
with other Earth observation satellite missions being shown in Table 2.

Additional Earth observation programmes exist. These programmes also offer freely
accessible imagery at a higher resolution.

2.2 Study Area

In this analysis, we examine urban changes in Shanghai, China. Shanghai has experienced
rapid population growth. Between 2000 and 2010, Shanghai’s population rose by 7.4

REGION : Volume 7, Number 2, 2020

R18 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

Table 1: Overview of Landsat missions, their revisit time and spatial resolution

Mission Operational time Revisit time Resolution

Landsat 1 1972-1978 18 d 80 m
Landsat 2 1975-1982 18 d 80 m
Landsat 3 1978-1983 18 d 80 m
Landsat 4 1983-1993 16 d 30 m
Landsat 5 1984-2013 16 d 30 m
Landsat 7 1999-present 16 d 15 m
Landsat 8 2013-present 16 d 15 m

Table 2: Overview of other Earth observation satellites, their revisit time and spatial
resolution

Provider Programme Operational time Revisit time Resolution

European Sentinel 2015-present 5 d 10m
Space Agency
Planet Labs Rapideye 2009-present 4/5 d to daily up to 0.8 m

PlanetscopeSkysat
NASA Orbview 3 2003-2007 <3 d 1-4 m
NASA EO-1 2003 -2017 – 10-30 m

million from 16.4 million to 23.8 million. It has an annual growth rate of 3.8 percent
over 10 years. While the pace of population expansion has been less acute, Shanghai’s
population has continued to grow. In 2018, an estimated 24.24 million people were living
in Shanghai experiencing a population expansion of approximately 8 million since 2010.
The city is therefore a well suited example to explore long-term changes in urbanisation.

To extract satellite imagery, a first step is to identify the shape of the geographical area
of interest. To this end, we use a polygon shapefile (https://www.arcgis.com/home/item.-
html?id=105f92bd1fe54d428bea35eade65691b). These polygons represent the Shanghai
metropolitan area, so they include the city centre and surrounding areas. These polygons
will be used as a bounding box to identify and extract relevant satellite images. We need
to ensure the shapefile is in the same coordinate reference system (CRS) as the satellite
imagery (WGS84 or EPSG:4326).

[2]: # Specify the path to your shapefile

directory = os.path.dirname(wdir)

shp = ’shang_dis_merged/shang_dis_merged.shp’

[3]: # Certify that the shapefile is in the right coordinate system, otherwise reproject

it into the right CRS

def shapefile_crs_check(file):

global bbox

bbox = gpd.read_file(file)

crs = bbox.crs

data = crs.get("init", "")

if ’epsg:4326’ in data:

print(’Shapefile in right CRS’)

else:

bbox = bbox.to_crs({’init’:’epsg:4326’})

f,ax = plt.subplots(figsize=(5,5))

plt.title(’Fig.1: Shapefile of Shanghai urban area’,y= -0.2)

bbox.plot(ax=ax)

[4]: shapefile_crs_check(shp)

[4]: Shapefile in right CRS

image/png<Figure size 360x360 with 1 Axes>

The world reference system (WRS) from NASA is a system to identify individual
satellite imagery scenes using path-row tuples instead of absolute latitude/longitude

REGION : Volume 7, Number 2, 2020

https://www.arcgis.com/home/item.html?id=105f92bd1fe54d428bea35eade65691b
https://www.arcgis.com/home/item.html?id=105f92bd1fe54d428bea35eade65691b

M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe R19

Figure 1: Shapefile of Shanghai urban area

coordinates. The latitudinal centre of the image corresponds to the row, the longitudinal
centre to the path. This system allows to uniformly catalogue satellite data across multiple
missions and provides an easy to use reference system for the end user. It is necessary
to note that the WRS was changed between Landsat missions, due to a difference in
swath patterns of the more recent Landsat satellites (NASA 2019). The WRS1 is used
for Landsat missions 1-3 and the WRS2 for Landsat missions 4,5,7,8. In order to obtain
path-row tuples of relevant satellite images for an area of interest (AOI), it is necessary to
intersect the WRS shapefile (either WRS1 or WRS2, depending on the Landsat satellite
you would like to obtain data from) with the AOI shapefile. The resulting path-row tuples
will later be used to locate and download the corresponding satellite images from the
Google Cloud Storage. The output of the intersection between WRS and AOI files can
be visualised using an interactive widget. The map below shows our area of interest in
purple and the footprints of the relevant Landsat images on top of an OpenStreetMap
basemap.

[5]: # Donwload the WRS 2 file to later intersect the shapefile with the WRS path/row

tuples to identify relevant Landsat scenes

#

def sat_path():

url = ’https://prd-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/

...s3fs-public/atoms/files/WRS2_descending_0.zip’

Create folder for WRS2 file

if os.path.exists(os.path.join(’Landsat_images’,’wrs2’)):

print(’folder exists’)

else:

os.makedirs(os.path.join(’Landsat_images’,’wrs2’))

WRS_PATH = os.path.join(’Landsat_images’,’WRS2_descending_0.zip’)

LANDSAT_PATH = os.path.dirname(WRS_PATH)

The WRS file is only needed once thus we add this loop

if os.path.exists(WRS_PATH):

print(’File already exists’)

Downloads the WRS file from the URL given and unzips it

else:

wget.download(url, out = LANDSAT_PATH)

shutil.unpack_archive(WRS_PATH, os.path.join(LANDSAT_PATH, ’wrs2’))

[6]: %%time

WARNING: this will take time the first time it’s executed

depending on your connection

sat_path()

REGION : Volume 7, Number 2, 2020

R20 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

[6]: folder exists

File already exists

Wall time: 1e+03 mu s

[7]: # Intersect the shapefile with the WRS2 shapefile to determine relevant path/row tuples

def get_pathrow():

global paths,rows,path,row, wrs_intersection

wrs=gpd.GeoDataFrame.from_file(os.path.join(’Landsat_images’,’wrs2’,

’WRS2_descending.shp’))

wrs_intersection=wrs[wrs.intersects(bbox.geometry[0])]

paths,rows=wrs_intersection[’PATH’].values, wrs_intersection[’ROW’].values

for i, (path,row) in enumerate(zip(paths,rows)):

print(’Image’, i+1, ’ -path:’, path, ’row:’, row)

[8]: get_pathrow()

[8]: Image 1 -path: 118 row: 38

Image 2 -path: 119 row: 38

[9]: # Visualise the output of the intersection with the shapefile using Folium

Get the center of the map

xy = np.asarray(bbox.centroid[0].xy).squeeze()

center = list(xy[::-1])

Select a zoom

zoom = 8

Create the most basic OSM folium map

m = folium.Map(location = center, zoom_start = zoom, control_scale=True)

Add the bounding box (bbox) GeoDataFrame in red using a lambda function

m.add_child(folium.GeoJson(bbox.__geo_interface__, name = ’Area of Interest’,

style_function = lambda x: {’color’: ’purple’, ’alpha’: 0}))

loc = ’Fig 2.: Landsat satellite tiles that cover the Area of Interest’

title_html = ’’’

<figcaption align="center" style="font-size:12px">{}</figcaption>

’’’.format(loc)

m.get_root().html.add_child(folium.Element(title_html))

Iterate through each polygon of paths and rows intersecting the area

for i, row in wrs_intersection.iterrows():

Create a string for the name containing the path and row of this Polygon

name = ’path: %03d, row: %03d’ % (row.PATH, row.ROW)

Create the folium geometry of this Polygon

g = folium.GeoJson(row.geometry.__geo_interface__, name=name)

Add a folium Popup object with the name string

g.add_child(folium.Popup(name))

Add the object to the map

g.add_to(m)

m

[9]: text/html<folium.folium.Map at 0x1f0ea0d7dd8>

[10]: +fvtextcolorcomment_color# Display number of images and Path/Row of the image

for i, (path,row) in enumerate(zip(paths,rows)):

print(’Image’, i+1, ’ -path:’, path, ’row:’, row)

[10]: Image 1 -path: 118 row: 38

Image 2 -path: 119 row: 38

Note that here you have two options: 1) continuing and executing the code reported in
the next two sections on data donwload and image cropping, or 2) skipping these sections
and proceeding to the image mosaicing sections. We recommend 2) as the processing of
unzipping every folder may take long causing the JupyterLab instance to crash.

REGION : Volume 7, Number 2, 2020

M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe R21

Figure 2: Landsat satellite tiles that cover the Area of Interest

2.3 Data download and pre-processing

We now have relevant path and row tuples for our area of analysis. So we can proceed to
download satellite images, which are stored on the Google Cloud. To download images, we
specify certain parameters: time frame, cloudcover in percentage (0-100 %) and satellite
mission (1-5,7,8). The here used Landsat578 API automatically searches the Google
Cloud for scenes with the specified parameters and downloads matching images. In order
to search the Google Cloud for relevant images, a list of available needs to be downloaded
when the code is run for the first time. The list provides basic information of the satellite
images and since Landsat data acquisition is ongoing, is updated continuously. Thus, if
data from the latest acquisition date is required, it is recommended to re-download the
file list before running the code.

We use satellite imagery from a Landsat 5 scene taken in 1984 and a Landsat 8
taken in 2019 to determine neighbourhood changes over time. Landsat 5 scenes can be
obtained from two different sensors, the Multispectral Scanner System and the Thematic
Mapper, which provide 4 and 7 bands, respectively. The Multispectral Scanner System
(MSS) is used in Landsat 1-3 and was superseded by the Thematic Mapper (TM). The
MSS provides a green and red band (Band numbers: 1,2) and two infrared bands (Band
numbers: 3,4), while the TM provides bands covering red, blue and green (Band numbers:
1,2,3), near-infrared (Band numbers: 4), short-wave infrared (Band numbers: 5,7) and
thermal infrared (6). Each downloaded scene contains all bands with one image per
band. The different bands can then be stacked in order to highlight various Earth surface
processes. In this exercise, scenes from the MSS and TM are downloaded, but only data
from the TM is used for analysis.

The Operational Land Imager (OLI) aboard Landsat 8 provides multispectral bands
(bands 1-7 and 9) with a resolution of 30 metres and a panchromatic band (band 8)
with a resolution of 15 metres (Barsi et al. 2014a). The Thermal Infrared Sensor (TIRS)
provides thermal infrared images (bands 10 and 11) with a resolution of 100 meters (Barsi
et al. 2014b). The Landsat 8 satellite has a swath width of 185 km for the OLI and
TIRS instruments, so one scene usually captures the extent of a city. In other cases, the
geographical area of interest may extend beyond one image so that multiple images may
be needed (Barsi et al. 2014b, Knight, Kvaran 2014). Given the revisit time of 16 days,
usually cloud free images can be retrieved for most cities on a bi-weekly or monthly basis
(Roy et al. 2014). The folder and filename of each scene provides information about the
satellite, instrument, path/row tuple and date.

Table 3 and Table 4 show which general information of the downloaded scenes can be
inferred from the folder and file names of each individual scene:

REGION : Volume 7, Number 2, 2020

R22 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

Table 3: Overview of folder naming convention for Landsat images

Parameter Meaning

L Landsat
X Sensor (“C”=OLI/TIRS combined, “O”=OLI-only, “T”=TIRS-only,

“E”=ETM+, “T”=TM, “M”=MSS)
PPP WRS path
RRR WRS row
YYYY Year
DDD Julian day of year
GSI Ground station identifier
VV Archive version number

Note: Folder names are structured as LXPPPRRRYYYYDDDGSIVV

Table 4: Overview of file naming convention for Landsat images

Parameter Meaning

L Landsat
X Sensor (“C”=OLI/TIRS combined, “O”=OLI-only, “T”=TIRS-only,

“E”=ETM+, “T”=TM, “M”=MSS)
SS Satellite (“0””=Landsat 7, “08”=Landsat 8)
LLL Processing correction level (L1TP/L1GT/L1GS)
PPP WRS path
RRR WRS row
YYYYMMDD Acquisition year, month, day
yyyymmdd Processing year, month, day
CC Collection number (01, 02, . . .)
TX Collection category (“RT”=Real-Time, “T1”=Tier 1, “T2”=Tier 2)

Note: File names are structured as LXSS LLLL PPPRRR YYYYMMDD yyyymmdd CC TX

2.3.1 Landsat imagery download

We will now download two Landsat satellite images, one from 1984 and one from 2019.
The starting year was chosen due to the increase in spatial resolution to 30 metres with
Landsat 4, whereas the end year was chosen at random. The specific dates were selected
as the cloud cover was below 5%, ensuring an unobstructed view of the urban area.

[11]: # Download Tile list from Google - only needs to be done when first running the code

NOTE this cell is using the ! magic, which runs command line processes from a Jupyter

notebook. Make sure the ‘landsat‘ tool, from the ‘landsat578‘ package is installed

and available

Path to index file

Index_PATH = os.path.join(directory ’/index.csv.gz’)

if os.path.exists(Index_PATH):

print(’File already exists’)

else:

!landsat --update-scenes yes

[12]: # Define Download function to acquire scenes from the Google API

def landsat_download(start_date, end_date, sat,path,row,cloud,output):

g=GoogleDownload(start=start_date, end=end_date, satellite=sat, path=path,

...row=row, max_cloud_percent=cloud, output_path=output)

g.download()

[13]: # Specify start/end date (in YYYY-MM-DD format), the cloud coverage of the image (in %)

and the satellite you would like to acquire images from (1-5,7,8). In this case we

acquire a recent scene from Landsat 8 with a cloud coverage of 5 %.

start_date = ’2019-01-01’

end_date = ’2019-02-20’

REGION : Volume 7, Number 2, 2020

M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe R23

cloud = 5

satellites = [8]

output = os.path.join(directory ’/Lansat_images/’)

[14]: # Loop through the specified satellites for each path and row tuple

for sat in satellites:

for i, (path,row) in enumerate(zip(paths,rows)):

print(’Image’, i+1, ’ -path:’, path, ’row:’, row)

landsat_download(start_date, end_date,sat,path,row,cloud,output)

[15]: # The above step is repeated to acquire a Landsat 5 scene from 1984 with 5 % cloud

coverage.

start_date = ’1984-04-22’

end_date = ’1984-04-24’

cloud = 5

satellites = [5]

output = os.path.join(directory ’/Lansat_images/’)

[16]: # Loop through the specified satellites for each path and row tuple

for sat in satellites:

for i, (path,row) in enumerate(zip(paths,rows)):

print(’Image’, i+1, ’ -path:’, path, ’row:’, row)

landsat_download(start_date, end_date,sat,path,row,cloud,output)

[17]: # Delete Scenes that were acquired using the MSS:

outdir = os.listdir(output)

for i in outdir:

if ’LM’ in os.path.basename(i):

try:

shutil.rmtree(os.path.abspath(os.path.join(output,os.path.basename(i))))

except OSError as e:

print ("Error: %s - %s." % (e.filename, e.strerror))

2.3.2 Image Cropping

Satellite imagery is large. The size per image can easily equate to 1 GB. It often makes the
data processing and analysis computationally expensive. Cropping the obtained scenes to
the relevant region of the image enables faster processing and analysing by significantly
reducing the size of the input.

[18]: # Define cropping function using command line gdalwarp.

Note: The BQA band is the quality assessment band, which has a different no data

value (1) than the other bands (0), which makes it necessary to us a different

croping function.

def crop(inraster,outraster,shape):

!gdalwarp -cutline {shape} -srcnodata 0 -crop_to_cutline {inraster} {outraster}

def crop_bqa(inraster,outraster,shape):

!gdalwarp -cutline {shape} -srcnodata 1 -crop_to_cutline {inraster} {outraster}

[19]: # Loop through every folder and a create an image cropped to the extent of the shapefile

save it with the original name and the extension _Cropped

for t in range(0,12):

for filename in glob.glob((output/́**/*_B{}.tif’).format(t), recursive=True):

inraster = filename

outraster = filename[:-4] ’_Cropped.tif’

crop(inraster, outraster, shp)

for filename in glob.glob(output/́**/*.tif’):

if ’BQA.TIF’ in i:

inraster = i

outraster = i[:-4] ’_Cropped.tif’

crop_bqa(inraster,outraster,shp)

2.3.3 Image mosaic

As indicated above, a single Landsat scene may not cover the full extent of a city due to
the satellite’s flight path as can be observed from the interactive map. Creating a mosaic
of two or more images is thus often needed to produce a single image that covers the
entirety of the area under analysis.

REGION : Volume 7, Number 2, 2020

R24 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

[20]: # Read in the relevant Landsat 8 files

output = ’Landsat_images/’

images = sorted(os.listdir(output))

dirpath1 = os.path.join(output, images[0])

dirpath2 = os.path.join(output, images[1])

mosaic_n = os.path.join(output,’Mosaic/’)

search = ’L*_Cropped.tif’

query1 = os.path.join(dirpath1,search)

query2 = os.path.join(dirpath2,search)

files1 = glob.glob(query1)

files2 = glob.glob(query2)

files1.sort()

files2.sort()

if os.path.exists(mosaic_n):

print(’Output Folder exists’)

else:

os.makedirs(mosaic_n)

[21]: # Match bands together and create a mosaic. Since the BQA band and the cloudmask have

different denominations than the other bands, these images have to be merged

together separately.

def mosaic_new(scene1,scene2):

src_mosaic =[]

string_list=[]

for i,j in zip(scene1,scene2):

for k in range(1,12):

string_list.append(’B{}_Cropped’.format(k))

for l in range(0,11):

if string_list[l] in os.path.basename(i) and os.path.basename(j):

src1 = rasterio.open(i)

src2 = rasterio.open(j)

src_mosaic = [src1,src2]

mosaic,out_trans = rasterio.merge.merge(src_mosaic)

out_meta = src1.meta.copy()

out_meta.update({"driver": "GTiff", ’height’:mosaic.shape[1],

’width’:mosaic.shape[2],’transform’:out_trans})

outdata = os.path.join(mosaic_n,’B{}_mosaic.tif’.format(l))

with rasterio.open(outdata,’w’,**out_meta) as dest:

dest.write(mosaic)

Mosaic Quality Assessment Band

if ’BQA_Cropped’ in os.path.basename(i) and os.path.basename(j):

bqa1 = rasterio.open(i)

bqa2 = rasterio.open(j)

bqa_mosaic = [bqa1,bqa2]

mosaic_,out_trans = rasterio.merge.merge(bqa_mosaic,nodata=1)

out_meta = bqa1.meta.copy()

out_meta.update({"driver": "GTiff", ’height’:mosaic_.shape[1],

’width’:mosaic_.shape[2],’transform’:out_trans})

outdata = os.path.join(mosaic_n,’BQA_mosaic.tif’)

with rasterio.open(outdata,’w’,**out_meta) as dest:

dest.write(mosaic_)

Mosaic of Cloudmask

search = ’cloudmask.tif’

query3 = os.path.join(dirpath1,search)

query4 = os.path.join(dirpath2,search)

files3 = glob.glob(query3)

files4 = glob.glob(query4)

for i,j in zip(files3,files4):

if ’cloudmask’ in os.path.basename(i)and os.path.basename(j):

cloudmask1 = rasterio.open(i)

cloudmask2 = rasterio.open(j)

cloud_mosaic = [cloudmask1,cloudmask2]

mosaic_c,out_trans = rasterio.merge.merge(cloud_mosaic,nodata=1)

out_meta = cloudmask1.meta.copy()

out_meta.update({"driver": "GTiff", ’height’:mosaic_c.shape[1],

’width’:mosaic_c.shape[2],’transform’:out_trans})

outdata = os.path.join(mosaic_n,’Cloudmask_mosaic.tif’)

with rasterio.open(outdata,’w’,**out_meta) as dest:

dest.write(mosaic_c)

[22]: mosaic_new(files1,files2)

REGION : Volume 7, Number 2, 2020

M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe R25

[23]: # Read in the relevant files for the Landsat 5 scenes

images = sorted(os.listdir(output))

dirpath_o1 = os.path.join(output, images[2])

dirpath_o2 = os.path.join(output, images[3])

mosaic_o = os.path.join(output,’Mosaic_old/’)

query_o1 = os.path.join(dirpath_o1,search)

query_o2 = os.path.join(dirpath_o2,search)

files_o1 = glob.glob(query_o1)

files_o2 = glob.glob(query_o2)

files_o1.sort()

files_o2.sort()

if os.path.exists(mosaic_o):

print(’Output Folder exists’)

else:

os.makedirs(mosaic_o)

[24]: # Match bands together and create a mosaic. Since the BQA band and the cloudmask have

different denominations than the other bands, these images have to be merged together

separately.

def mosaic_old(scene_o1,scene_o2):

src_mosaic =[]

string_list=[]

for i,j in zip (scene_o1,scene_o2):

for k in range(1,8):

string_list.append(’B{}_Cropped’.format(k))

for l in range(0,7):

if string_list[l] in os.path.basename(i) and os.path.basename(j):

src1 = rasterio.open(i)

src2 = rasterio.open(j)

src_mosaic = [src1,src2]

mosaic,out_trans= rasterio.merge.merge(src_mosaic)

out_meta = src1.meta.copy()

out_meta.update({"driver": "GTiff", ’height’:mosaic.shape[1],

’width’:mosaic.shape[2],’transform’:out_trans})

outdata = os.path.join(mosaic_o,’B{}_mosaic.tif’.format(l))

with rasterio.open(outdata,’w’,**out_meta) as dest:

dest.write(mosaic)

Mosaic Quality Assessment Band

if ’BQA_Cropped’ in os.path.basename(i) and os.path.basename(j):

bqa1 = rasterio.open(i)

bqa2 = rasterio.open(j)

bqa_mosaic = [bqa1,bqa2]

mosaic_,out_trans= rasterio.merge.merge(bqa_mosaic,nodata=1)

out_meta = bqa1.meta.copy()

out_meta.update({"driver": "GTiff", ’height’:mosaic_.shape[1],

’width’:mosaic_.shape[2],’transform’:out_trans})

outdata = os.path.join(mosaic_o,’BQA_mosaic.tif’)

with rasterio.open(outdata,’w’,**out_meta) as dest:

dest.write(mosaic_)

Mosaic of Cloudmask

search = ’cloudmask.tif’

query_o3= os.path.join(dirpath_o1,search)

query_o4 = os.path.join(dirpath_o2,search)

files_o3 = glob.glob(query_o3)

files_o4 = glob.glob(query_o4)

for i,j in zip(files_o3,files_o4):

if ’cloudmask’ in os.path.basename(i)and os.path.basename(j):

cloudmask1 = rasterio.open(i)

cloudmask2 = rasterio.open(j)

cloud_mosaic = [cloudmask1,cloudmask2]

mosaic_c,out_trans= rasterio.merge.merge(cloud_mosaic,nodata=1)

out_meta = cloudmask1.meta.copy()

out_meta.update({"driver": "GTiff", ’height’:mosaic_c.shape[1],

’width’:mosaic_c.shape[2],’transform’:out_trans})

outdata = os.path.join(mosaic_o,’Cloudmask_mosaic.tif’)

with rasterio.open(outdata,’w’,**out_meta) as dest:

dest.write(mosaic_c)

[25]: mosaic_old(files_o1,files_o2)

REGION : Volume 7, Number 2, 2020

R26 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

2.3.4 Natural-colour (True-colour) composition

Our downloaded data from Landsat 8 and Landsat 5 have different band designations.
Combining different satellite bands are useful to identify features of the urban environment:
vegetation, built-up areas, ice and water. We create a standard natural-colour composition
image using Red, Green and Blue satellite bands. This colour composition best reflects
the natural environment. For instance, trees are green; snow and clouds are white; and
water is blue. Landsat 8 has 11 bands with bands 4, 3 and 2 corresponding to Red, Green
and Blue respectively. Landsat 5 has 7 bands with bands 3, 2 and 1, corresponding to Red,
Green and Blue. We perform layer stacking to produce a true colour image composition
to gain understanding of the local area before extracting and analysing features of the
urban environment.

[26]: # Normalise the bands to so that they can be combined to a single image

def normalize(array):

"""Normalizes numpy arrays into scale 0.0 - 1.0"""

array_min, array_max = array.min(), array.max()

return ((array - array_min)/(array_max - array_min))

[27]: # Adjust the intensity of each band for visualisation.

This is a way of rescaling each band by clipping the pixels that are outside the

specified range to the range we defined. By adjusting the gamma, we change the

brightness of the image with gamma >1 resulting in a brighter image. However

there are more complex methods such as top of the atmosphere corrections, which

subtracts any atmospheric interference from the image.

For the purpose of this notebook, this way is sufficient.

def rescale_intensity(image):

p2, p98 = np.percentile(image, (0.2, 98))

img_exp = exposure.rescale_intensity(image, in_range=(p2, p98))

img_gamma = exposure.adjust_gamma(img_exp, gamma=2.5,gain=1)

return(img_gamma)

[28]: # Downsample image resolution with factor 0.5 for displaying purposes.

def downsample(file):

downscale_factor=0.5

data = file.read(1,

out_shape=(

file.count,

int(file.height * downscale_factor),

int(file.width * downscale_factor)

),

resampling=Resampling.bilinear

)

scale image transform

transform = file.transform * file.transform.scale(

(file.width / data.shape[-1]),

(file.height / data.shape[-2])

)

return data

[29]: # Use rasterio to open the Red, Blue and Green bands of the mosaic image from 1984

to create an RGB image

NOTE: The Mosaic names do not correspond to the actual band designations as

python starts counting at 0!

with rasterio.open(’Landsat_images/Mosaic_old/B0_mosaic.tif’) as band1_old:

b1_old=downsample(band1_old)

with rasterio.open(’Landsat_images/Mosaic_old/B1_mosaic.tif’) as band2_old:

b2_old=downsample(band2_old)

with rasterio.open(’Landsat_images/Mosaic_old/B2_mosaic.tif’) as band3_old:

b3_old=downsample(band3_old)

[30]: # Normalise the bands so that they can be combined to a single image

red_old_n = normalize(b3_old)

green_old_n = normalize(b2_old)

blue_old_n = normalize(b1_old)

Apply the function defined before to make more natural-looking image

red_adj = rescale_intensity(red_old_n)

green_adj = rescale_intensity(green_old_n)

blue_adj = rescale_intensity(blue_old_n)

REGION : Volume 7, Number 2, 2020

M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe R27

Figure 3: True colour Landsat image of the Shanghai urban area from 1984

Stack the three different bands together

rgb_2 = np.dstack((red_adj,green_adj,blue_adj))

Visualise the true color image

fig,ax = plt.subplots(figsize=(10,10))

ax.imshow(rgb_2)

plt.title(’Fig.3: True color Landsat image of the Shanghai urban area from 1984’,

y=-0.1, fontsize=12)

plt.show()

plt.close()

del rgb_2,b1_old,b2_old,b3_old,red_adj,green_adj,blue_adj

[30]: image/png<Figure size 720x720 with 1 Axes>

[31]: # Use rasterio to open the Red, Blue and Green bands of the mosaic image from 2019

to create an RGB image

NOTE: The Mosaic names do not correspond to the actual band designations as

python starts counting at 0!!

with rasterio.open(’Landsat_images/Mosaic/B1_mosaic.tif’) as band2_new:

b2_new = downsample(band2_new)

with rasterio.open(’Landsat_images/Mosaic/B2_mosaic.tif’) as band3_new:

b3_new = downsample(band3_new)

with rasterio.open(’Landsat_images/Mosaic/B3_mosaic.tif’) as band4_new:

b4_new = downsample(band4_new)

[32]: # Normalise the bands so that they can be combined to a single image

red_new_n = normalize(b4_new)

green_new_n = normalize(b3_new)

blue_new_n = normalize(b2_new)

Apply the function defined before to make more natural-looking image

red_rescale = rescale_intensity(red_new_n)

green_rescale = rescale_intensity(green_new_n)

blue_rescale = rescale_intensity(blue_new_n)

Stack the three different bands together

rgb = np.dstack((red_rescale, green_rescale, blue_rescale))

Here we adjust the gamma (brightness) for the stacked image to achieve a more

natural looking image.

rgb_adjust = exposure.adjust_gamma(rgb, gamma = 1.5, gain=1)

Visualise the true color image

fig,ax = plt.subplots(figsize=(10,10))

REGION : Volume 7, Number 2, 2020

R28 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

Figure 4: True colour Landsat image of the Shanghai urban area from 2019

ax.imshow(rgb_adjust)

plt.title(’Fig.4: True color Landsat image of the Shanghai urban area from 2019’,

y=-0.1, fontsize=12)

plt.show()

plt.close()

del rgb,red_new_n,green_new_n,blue_new_n,red_rescale,green_rescale,blue_rescale,

rgb_adjust

[32]: image/png<Figure size 720x720 with 1 Axes>

When comparing the true colour Landsat satellite images in Figures 3 and 4, the
urbanisation of Shanghai between 1984 and 2019 is apparent. In the following steps, we
will analyse and quantify these urban changes.

3 Feature extraction

Since the above two maps show that urban neighbourhoods of Shanghai have undergone
dramatic changes over time in colour, texture, greenery, buildings, etc., the next stage is
to gain valuable information out of satellite images and interpret these changes. Since the
images we have downloaded are on a city-wide scale, which covers more than a thousand
kilometre spatial resolution and less detailed. Therefore, feature extraction is performed to
get a reduced representation of the initial image but informative and sufficiently accurate
for subsequent analysis and interpretation.

We examine four sets of features based on the above two true colour maps and
the scale, where the colour, texture, greenery, and buildings changed a lot during the
past 25 years in Shanghai. Specifically, colour and texture features extracted from true
colour imagery (i.e. RGB bands composition represented by bands 1-3 and bands 2-4
in 1984 and 2019), and vegetation features and built-up features extracted from Red,
near infrared (NIR) and shortwave infrared (SWIR) bands, represented by bands 3-5
and bands 4-6 in 1984 and 2019. More detailed information about the meaning of each
band can be found at https://www.usgs.gov/faqs/what-are-best-landsat-spectral-bands-
use-my-research?qt-news science products=0#qt-news science products. In this analysis,
colour features measure the colour moments of true colour imagery to interpret colour
distribution; texture features apply LBP (Local binary patterns) texture spectrum model
to show spatial distribution of intensity values in an image; vegetation features calculate
the NDVI (Normalised difference vegetation index) to capture the amount of vegetation,
and built-up features calculate NDBI (Normalised difference built-up index) to highlight
artificially constructed areas.

REGION : Volume 7, Number 2, 2020

https://www.usgs.gov/faqs/what-are-best-landsat-spectral-bands-use-my-research?qt-news_science_products=0#qt-news_science_products
https://www.usgs.gov/faqs/what-are-best-landsat-spectral-bands-use-my-research?qt-news_science_products=0#qt-news_science_products

M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe R29

Figure 5: Spatial distribution of all administrative divisions of Shanghai

The administrative divisions of Shanghai have experienced tremendous changes in the
last tens of years (Ministry of Civial Affairs of the People’s Republic of China 2018), thus,
we will conduct feature extraction of imagery on the current administrative boundaries to
explore if satellite imagery can be used to reflect and interpret urban changes. The figure
below shows the spatial distribution of each administrative area with relative labels in
Shanghai.

[33]: # read administritive boundary shapefile of Shanghai

poly = gpd.read_file(shp)

f, ax = plt.subplots(1, figsize = (9,9))

poly.plot(ax = ax)

create a new colomn, in order to plot polygon labels (i.e. name) in the map

poly[’coords’]=poly[’geometry’].apply(lambda x:x.representative_point().coords[:])

poly[’coords’]=[coords[0] for coords in poly[’coords’]]

for idx, row in poly.iterrows():

ax.annotate(text=row[’Name’],xy=row[’coords’],va=’center’,ha=’center’,alpha = 0.8,

fontsize = 8)

plt.axis(’equal’)

plt.axis(’off’)

f.suptitle(’Fig.5: Spatial distribution of all administrative divisions of Shanghai’,

y=-0.1,fontsize = 12)

[33]: Text(0.5, -0.1, ’Fig.5: Spatial distribution of all administrative divisions of

Shanghai’)

image/png<Figure size 648x648 with 1 Axes>

Figure 5 shows that administrative divisions of ‘Chongming’ in the north appear three
geometries. Therefore, it is necessary to check if they belong to a single administrative
unit.

[34]: poly.loc[poly[’Name’]== ’Chongming’,’Name’]

[34]: 0 Chongming

3 Chongming

5 Chongming

Name: Name, dtype: object

Chongming administrative division consist of three separate geometries, which may
confuse our further analysis. As a result, we dissolved these geometries into a single
geometric feature and take a look at the new dataset. The below table shows that the
Chongming administrative division now consists of multipolygons which includes all
polygons as a whole.

REGION : Volume 7, Number 2, 2020

R30 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

[35]: # Dissolve geometries with the identical names together

poly = poly.dissolve(by = ’Name’).reset_index()

Have a look at the name of all administritive unit and we can see that chongming

districts have been dissolved into a single administritive unit

poly[’Name’].values

[35]: array([’Baoshan’, ’Changning’, ’Chongming’, ’Fengxian’, ’Hongkou’,

’Huangpu’, ’Jiading’, ’Jinshan’, ’Minhang’, ’Pudong New’, ’Putuo’,

’Qingpu’, ’Songjiang’, ’Xuhui’, ’Yangpu’, ’Zhabei’], dtype=object)

3.1 Image processing

Further pre-processing of satellite imagery is needed before feature extraction. This
pre-processing involves three steps:

1. Masking (cropping) of raster files (i.e., Blue, Green, Red, Nir and SWIR bands)
into each administrative district polygon;

2. Image enhancement to improve the quality and content of the original image; and,

3. Band stacking based on each neighbourhood unit.

[36]: # open raster files

file_list_old = sorted(glob.glob(’Landsat_images/Mosaic_old’ "/*.tif",recursive = True))

files_old = [rio.open(filename) for filename in file_list_old]

[37]: file_list = sorted(glob.glob(’Landsat_images/Mosaic’ "/*.tif"))

files = [rio.open(filename) for filename in file_list]

Before cropping all raster files into each polygon in the vector file (i.e. Shanghai
administrative area shapefile), we have to ensure they have the same coordinate reference
system (CRS). Once matched, the cropping process is prepared to go.

[38]: poly.crs

[38]: {’init’: ’epsg:4326’}

[39]: # check the crs of one band of satellite imagery

files[0].crs

[39]: CRS.from_epsg(32651)

[40]: # reproject the vector file to make it consistent with raster files

poly = poly.to_crs(’EPSG:32651’)

[41]: # get each neighbourhood geographic boundary based on administritive area data

geo = [poly.__geo_interface__[’features’][i][’geometry’]

for i in range(len(poly))]

[42]: # clip R,G,B bands separately by each poly, so get pixel values in each poly and save

them into a list

out_image = [[] for i in range(5)]

img_old = [[] for i in range(5)]

x: Blue,Green,Red,NIR and SWIR bands, y: 16 polygons from vertor file

for x,y in itertools.product(range(5),range(len(geo))):

out_image[0] means masked Blue band polygon

out_image[x].append(mask(files_old[0:5][x], [geo[y]], crop=True))

image enhancement: normalisation and Histogram Equalization

img_old[x].append(exposure.equalize_hist(normalize(out_image[x][y][0][0])))

del out_image,files_old

[43]: # clip R,G,B bands separately by each poly, so get pixel values in each poly and save

them into a list

out_image = [[] for i in range(5)]

img_new = [[] for i in range(5)]

x: Blue,Green,Red,NIR and SWIR bands, y: 16 polygons from vertor file

REGION : Volume 7, Number 2, 2020

M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe R31

for x,y in itertools.product(range(5),range(len(geo))):

out_image[0] means masked Blue band polygon

out_image[x].append(mask(files[0:5][x], [geo[y]], crop=True))

image enhancement: normalisation and Histogram Equalization

img_new[x].append(exposure.equalize_hist(normalize(out_image[x][y][0][0])))

del out_image,files

[44]: # have a look at the pixel values of one geographic area in blue band

img_new[0][0]

[44]: array([[0.48515378, 0.48515378, 0.48515378, ..., 0.48515378, 0.48515378,

0.48515378],

[0.48515378, 0.48515378, 0.48515378, ..., 0.48515378, 0.48515378,

0.48515378],

[0.48515378, 0.48515378, 0.48515378, ..., 0.48515378, 0.48515378,

0.48515378],

...,

[0.48515378, 0.48515378, 0.48515378, ..., 0.48515378, 0.48515378,

0.48515378],

[0.48515378, 0.48515378, 0.48515378, ..., 0.48515378, 0.48515378,

0.48515378],

[0.48515378, 0.48515378, 0.48515378, ..., 0.48515378, 0.48515378,

0.48515378]])

[45]: # stack R,G,B bands together for later feature extraction

bb = [img_old[0][x].astype(np.float) for x in range(len(geo))]

bg = [img_old[1][x].astype(np.float) for x in range(len(geo))]

br = [img_old[2][x].astype(np.float) for x in range(len(geo))]

[46]: rgb_old = [np.dstack((br[x],bg[x],bb[x])) for x in range(len(geo))]

[47]: bb = [img_new[0][x].astype(np.float) for x in range(len(geo))]

bg = [img_new[1][x].astype(np.float) for x in range(len(geo))]

br = [img_new[2][x].astype(np.float) for x in range(len(geo))]

[48]: rgb_new = [np.dstack((br[x],bg[x],bb[x])) for x in range(len(geo))]

3.2 Colour features

Colour features are used to extract the characteristics of colours from satellite imagery.
A commonly used method to extract colour features is to compute colour moments of
an image. Colour moments provide a measurement of colour similarity between images
(Keen 2005). Basically, colour probability distributions of an image are characterised by
a range of unique moments. The mean, standard deviation and skewness these three
central moments are generally used to identify colour distribution. Here we extract
colour features on HSV (Hue, Saturation and Value) colour space because it corresponds
to human vision and has been widely used in computer vision. HSV colour space can
be converted from RGB colour channels, Hue represents the colour portion, saturation
represents the amount of grey in a particular colour (0 is grey), and Value represents the
brightness of the colour (0 is black). Therefore, the true-colour imagery is characterised
by a total of nine moments - three moments for each HSV channel in the same units.

[49]: # interpret the color probability distribution by computing low order color

moments(1,2,3)

def color_moments(img):

if img is None:

return

Convert RGB to HSV colour space

img_hsv = rgb2hsv(img)

Split the channels - h,s,v

h, s, v = [img_hsv[:,:,i] for i in [0,1,2]]

Initialize the colour feature

color_feature = []

N = h.shape[0] * h.shape[1]

The first central moment - average

h_mean = np.mean(h) # np.sum(h)/float(N)

s_mean = np.mean(s) # np.sum(s)/float(N)

v_mean = np.mean(v) # np.sum(v)/float(N)

REGION : Volume 7, Number 2, 2020

R32 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

Table 5: Partial colour features identified in 1984

Name h mean s mean v mean h std s std v std h skew s skew v skew

Baoshan 0.27216 0.05208 0.64415 0.32709 0.07246 0.18531 0.35671 0.09006 0.19945
Changning 0.22141 0.05156 0.65989 0.28837 0.07518 0.17446 0.33080 0.09250 0.18763
Chongming 0.15381 0.01739 0.74231 0.27216 0.03563 0.10235 0.33292 0.05118 0.12060
Fengxian 0.33961 0.11292 0.60576 0.32194 0.12281 0.24362 0.34723 0.14439 0.25767
Hongkou 0.24951 0.06370 0.65073 0.30983 0.08744 0.18781 0.34797 0.10619 0.20013

color_feature.extend([h_mean, s_mean, v_mean])

The second central moment - standard deviation

h_std = np.std(h) # np.sqrt(np.mean(abs(h - h.mean())**2))

s_std = np.std(s) # np.sqrt(np.mean(abs(s - s.mean())**2))

v_std = np.std(v) # np.sqrt(np.mean(abs(v - v.mean())**2))

color_feature.extend([h_std, s_std, v_std])

The third central moment - the third root of the skewness

h_skewness = np.mean(abs(h - h.mean())**3)

s_skewness = np.mean(abs(s - s.mean())**3)

v_skewness = np.mean(abs(v - v.mean())**3)

h_thirdMoment = h_skewness**(1./3)

s_thirdMoment = s_skewness**(1./3)

v_thirdMoment = v_skewness**(1./3)

color_feature.extend([h_thirdMoment, s_thirdMoment, v_thirdMoment])

return color_feature

[50]: # create and initialize a data table to store colour feastures

color_mom_old = pd.DataFrame(color_moments(rgb_old[0]))

add the rest columns by assigning 9 color moments in each poly

for i in range(1,len(rgb_old)):

color_mom_old[i]= color_moments(rgb_old[i])

i = i+1

[51]: # create and initialize a data table

color_mom_new = pd.DataFrame(color_moments(rgb_new[0]))

add the rest columns by assigning 9 color moments in each poly

for i in range(1,len(rgb_new)):

color_mom_new[i]= color_moments(rgb_new[i])

i = i+1

[52]: # Data manipulation

color_old_var = color_mom_old.T

assign column names

color_old_var.columns =

[’h_mean’,’s_mean’,’v_mean’,’h_std’,’s_std’,’v_std’,’h_skew’,’s_skew’,’v_skew’]

set geographic name as index

color_old_var= color_old_var.set_index(poly.Name)

[53]: color_new_var = color_mom_new.T

color_new_var.columns =

[’h_mean’,’s_mean’,’v_mean’,’h_std’,’s_std’,’v_std’,’h_skew’,’s_skew’,’v_skew’]

color_new_var= color_new_var.set_index(poly.Name)

As we have created two new tables for colour features in the year 1984 and 2019, it
would be helpful to have a view of the tables and see how they look like. Table 5 and Table
6 show nine variables (column) representing colour features within five administrative
division of Shanghai (row).

[54]: # check the information of colour feature

color_old_var.head().style.set_caption(’Table 5: Partial colour features

... identified in 1984’)

[54]: text/html<pandas.io.formats.style.Styler at 0x1f0ed9c4be0>

[55]: color_new_var.head().style.set_caption(’Table 6: Partial colour features

... identified in 2019’)

[55]: text/html<pandas.io.formats.style.Styler at 0x1f081f31518>

REGION : Volume 7, Number 2, 2020

M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe R33

Table 6: Partial colour features identified in 2019

Name h mean s mean v mean h std s std v std h skew s skew v skew

Baoshan 0.23107 0.03587 0.63894 0.29785 0.05205 0.18019 0.33678 0.06787 0.19559
Changning 0.23185 0.03129 0.64924 0.30469 0.04847 0.16700 0.34439 0.06297 0.18248
Chongming 0.15731 0.01647 0.74240 0.28250 0.03184 0.10177 0.34529 0.04336 0.11980
Fengxian 0.29554 0.08620 0.60543 0.30273 0.09770 0.24360 0.32939 0.11570 0.25723
Hongkou 0.23994 0.03758 0.63861 0.30383 0.05505 0.18294 0.33962 0.07055 0.19762

3.3 Texture features

To extract texture features, we use a Local Binary Pattern (LBP) approach. LBP searches
for pixels adjacent to a central point and tests whether these surrounding pixels are
greater or less than the central pixel and generate a binary classification (Pedregosa et al.
2011) (https://scikit-image.org/docs/dev/auto examples/features detection/plot local bi-
nary pattern.html)). In theory, eight adjacent neighbour pixels in greyscale are set to
compare with one central pixel value by 3 * 3 neighbourhood threshold, and consider
the result as 1 or 0 (Ojala et al. 1996). Thus, these eight surrounding binary numbers
correspond to LBP code for the central pixel value, determining the texture pattern of
that threshold. Texture features are then the distribution of a collection of LBPs over an
image.

[56]: # convert a RGB image into Grayscale,which takes less space for analysis

gray_images_old = [rgb2gray(rgb_old[i]) for i in range(len(rgb_old))]

gray_images_new = [rgb2gray(rgb_new[i]) for i in range(len(rgb_new))]

[57]: # settings for LBP

radius = 1 # radius = 1 refers to a 3*3 patch/window scale

n_points = 8 * radius # the number of circularly symmetric neighbour set points

method = ’uniform’ # finer quantization of the angular space which is gray scale and

rotation invariant

lbps_old = [local_binary_pattern(gray_images_old[i],n_points,radius,method)

... for i in range(len(rgb_old))]

lbps_new = [local_binary_pattern(gray_images_new[i],n_points,radius,method)

... for i in range(len(rgb_new))]

[58]: # n_bins are the same in each neighbourhood

n_bins = int(lbps_old[0].max()+1)

define a function to count the number of points in a given bin of LBP distribution

histogram

def count_hist(x):

return np.histogram(lbps_old[x].ravel(),density=True, bins=n_bins,range=(0, n_bins))

Assign counts to a new list, return the higtogram vector features in this cell(polygon)

hist_features_old = [count_hist(i)[0] for i in range(len(rgb_old))]

[59]: # Extract texture features of another year based on same method

n_bins = int(lbps_new[0].max()+1)

def count_hist(x):

return np.histogram(lbps_new[x].ravel(),density=True, bins=n_bins,range=(0, n_bins))

Assign counts to a new list, return the higtogram vector features in this cell(polygon)

hist_features_new = [count_hist(i)[0] for i in range(len(rgb_new))]

Same with operations on colour features, this time we build two new tables (Table
7 and 8) for texture features, with each row present administrative division and each
column represent texture feature.

[60]: # The histogram features are the texture features

texture_old_var = pd.DataFrame([hist_features_old[a] for a in range(len(rgb_old))])

texture_old_var.columns = [’LBP’+ str(i) for i in range(n_bins)]

texture_old_var = texture_old_var.set_index(poly.Name)

Have a look at the table with texture features of administrive division of

Shanghai in 1984

texture_old_var.head().style.set_caption(’Table 7: Partial texture features

... identified in 1984’)

REGION : Volume 7, Number 2, 2020

https://scikit-image.org/docs/dev/auto_examples/features_detection/plot_local_binary_pattern.html
https://scikit-image.org/docs/dev/auto_examples/features_detection/plot_local_binary_pattern.html

R34 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

Table 7: Partial texture features identified in 1984

Name LBP0 LBP1 LBP2 LBP3 LBP4 LBP5 LBP6 LBP7 LBP8 LBP9

Baoshan 0.03509 0.04196 0.04071 0.06839 0.07839 0.06748 0.04034 0.04110 0.52005 0.06648
Changning 0.03609 0.04608 0.04196 0.05979 0.06004 0.06442 0.03754 0.04339 0.53942 0.07129
Chongming 0.02582 0.02995 0.02176 0.03406 0.03958 0.03679 0.02404 0.02916 0.70944 0.04941
Fengxian 0.05551 0.06647 0.05123 0.07200 0.07377 0.07393 0.05291 0.06510 0.38211 0.10698
Hongkou 0.04202 0.05056 0.04354 0.05933 0.05676 0.07072 0.03969 0.04649 0.51043 0.08047

Table 8: Partial texture features identified in 2019

Name LBP0 LBP1 LBP2 LBP3 LBP4 LBP5 LBP6 LBP7 LBP8 LBP9

Baoshan 0.04306 0.04774 0.04077 0.05862 0.06808 0.05681 0.03741 0.04557 0.52419 0.07777
Changning 0.04264 0.05012 0.03767 0.05137 0.05842 0.06153 0.03524 0.04708 0.53945 0.07648
Chongming 0.02547 0.02964 0.02333 0.03522 0.04762 0.03641 0.02359 0.02865 0.70442 0.04565
Fengxian 0.05121 0.06105 0.05288 0.08141 0.09716 0.07923 0.05152 0.06044 0.36993 0.09517
Hongkou 0.04703 0.05417 0.04294 0.05439 0.05501 0.06805 0.03879 0.04894 0.50732 0.08335

[60]: text/html<pandas.io.formats.style.Styler at 0x1f081ebe630>

[61]: # The histogram features are the texture features

texture_new_var = pd.DataFrame([hist_features_new[a] for a in range(len(rgb_new))])

texture_new_var.columns = [’LBP’ str(i) for i in range(n_bins)]

texture_new_var = texture_new_var.set_index(poly.Name)

Have a look at the table with texture features of administrive division of

Shanghai in 2019

texture_new_var.head().style.set_caption(’Table 8: Partial texture features

... identified in 2019’)

[61]: text/html<pandas.io.formats.style.Styler at 0x1f081ebeac8>

3.4 Vegetation and built-up features

Vegetation features and built-up features can be measured by calculating fundamental
NDVI and NDBI indices in each administrative area respectively. The Normalized
Difference Vegetation Index (NDVI) is a normalized index, using Red and NIR bands
to display the amount of vegetation (NASA 2000). The use of NDVI maximizes the
reflectance properties of vegetation by minimizing NIR and maximizing the reflectance in
the red wavelength. The measure is used to distinguish vegetation in regions, as more
vegetation will affect the ratio of visible light absorbed and near-infrared light reflected.
The formula is as follows:

NDVI = (NIR − Red)/(NIR + Red)

The output value of this index is between -1.0 and 1.0. Close to 0 represents no
vegetation, close to 1 indicates the highest possible density of green leaves, and close to -1
indicates water bodies.

The Normalized Difference Built-up Index (NDBI) uses the NIR and SWIR bands
to highlight artificially constructed areas (built-up areas) where there is a typically a
higher reflectance in the shortwave infrared region than the near infrared region (Zha
et al. 2003). The index is a ratio type that reduces the effects of differences in terrain
illumination and atmospheric effects. The formula is as follows:

NDBI = (SWIR − NIR)/(SWIR + NIR)

Also, the output value of this index is between -1 to 1. Higher values represent built-up
areas whereas negative values represent water bodies.

After calculating these two indices, vegetation features and built-up features can be
measured by calculating average values of index values within each administrative area.

REGION : Volume 7, Number 2, 2020

M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe R35

Table 9: Partial vegetation and built-up features identified in 1984

Name veg mean builtup mean

Baoshan -0.002218 0.000611
Changning -0.002147 0.000582
Chongming -0.000805 0.000190
Fengxian -0.007201 0.001499
Hongkou -0.004648 -0.000313

3.4.1 Vegetation features

[62]: # identify red and NIR band to each neighbourhood unit in 1984

red_old, nir_old = img_old[2],img_old[3]

Calculate ndvi, assign 0 to nodata pixels

ndvi_old = [np.where((nir_old[i] red_old[i])==0, 0,

(nir_old[i]-red_old[i])/(nir_old[i] red_old[i]))

for i in range(len(poly))]

[63]: # identify red and NIR band to each neighbourhood unit in 1984

red_new, nir_new = img_new[2],img_new[3]

Calculate ndvi, assign 0 to nodata pixels

ndvi_new = list(map(lambda i: np.where((nir_new[i] red_new[i])==0, 0,

(nir_new[i]-red_new[i])/(nir_new[i] red_new[i])),

list(range(len(poly)))

))

[64]: veg_old_var = pd.DataFrame([np.mean(ndvi_old[i]) for i in range(len(poly))],

index = poly.Name, columns = [’veg_mean’])

[65]: veg_new_var = pd.DataFrame([np.mean(ndvi_new[i]) for i in range(len(poly))],

index = poly.Name, columns = [’veg_mean’])

3.4.2 Built-up features

[66]: # identify red and NIR band to each neighbourhood unit in 1984

nir_old, swir_old = img_old[3],img_old[4]

Calculate ndvi, assign 0 to nodata pixels

ndbi_old = [np.where((nir_old[i] swir_old[i])==0., 0,

(swir_old[i] - nir_old[i])/(nir_old[i] swir_old[i]))

for i in range(len(poly))]

[67]: # identify red and NIR band to each neighbourhood unit in 1984

nir_new, swir_new = img_new[3],img_new[4]

Calculate ndvi, assign 0 to nodata pixels

ndbi_new = list(map(lambda i: np.where((nir_new[i] swir_new[i])==0., 0,

(swir_new[i] - nir_new[i])/(nir_new[i] swir_new[i])),

list(range(len(poly)))

))

[68]: builtup_old_var = pd.DataFrame([np.mean(ndbi_old[i]) for i in range(len(poly))],

index = poly.Name, columns = [’builtup_mean’])

[69]: builtup_new_var = pd.DataFrame([np.mean(ndbi_new[i]) for i in range(len(poly))],

index = poly.Name, columns = [’builtup_mean’])

Table 9 and Table 10 created as shown below contain both vegetation features (NDVI)
and builtup features (NDBI), with the mean value of vegetation features and built-up
features (two columns) calculated at each administrative division (row).

[70]: veg_built_old = pd.concat([veg_old_var,builtup_old_var], axis = 1)

veg_built_old.head().style.set_caption(’Table 9: Partial vegetation and built-up

... features identified in 1984’)

[70]: text/html<pandas.io.formats.style.Styler at 0x1f081e1b1d0>

REGION : Volume 7, Number 2, 2020

R36 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

Table 10: Partial vegetation and built-up features identified in 2019

Name veg mean builtup mean

Baoshan -0.001801 0.001938
Changning -0.001515 0.000774
Chongming -0.000705 0.000318
Fengxian -0.008185 -0.000408
Hongkou -0.002057 -0.000277

[71]: veg_built_new = pd.concat([veg_new_var,builtup_new_var], axis = 1)

veg_built_new.head().style.set_caption(’Table 10: Partial vegetation and built-up

... features identified in 2019’)

[71]: text/html<pandas.io.formats.style.Styler at 0x1f0ed9c4828>

4 Feature clustering

Now we have four types of features: colour, texture, vegetation and built-up area for
Shanghai in 1984 and 2019. These features are the embodiment of urban changes and
vary greatly due to rapid urbanisation and development. Therefore, the subsequent task
is to identify systematic patterns from these integrated features for analysis of urban
changes, such as whether several administrative areas share similar patterns. A clustering
method is required within this context to group these geographical divisions that are
similar within each other but different between them. Considering the ease of computation
and fast implementation, we use generalised and the most popular k-means clustering
to identify representative types of neighbourhoods based on multiple features. K-means
clustering partitions the data by creating k groups of equal variance, minimising the
within-cluster sum of squares (Pedregosa et al. 2011). We can perform K-means using
the package scikit-learn, which is a powerful machine learning package for Python.

[72]: # merge all features together

features_old_var = pd.concat([color_old_var,texture_old_var,veg_old_var,

builtup_old_var], axis = 1)

features_old_var.head().style.set_caption(’Table 11: Four types of features

... (21 in total) identified in 1984’)

[72]: text/html<pandas.io.formats.style.Styler at 0x1f0ed9c4908>

[73]: # merge all features together

features_new_var = pd.concat([color_new_var,texture_new_var,veg_new_var,

builtup_new_var], axis=1)

features_new_var.head().style.set_caption(’Table 12: Four types of features

... (21 in total) identified in 2019’)

[73]: text/html<pandas.io.formats.style.Styler at 0x1f081f31438>

Table 11 and Table 12 reveal the integrated 21 features across our four sets of image
features and their differences at geographical division in magnitude between 1984 and
2019. Since k-means clustering is one of the machine learning algorithms, which generally
expect data transformation for preprocessing before fitting the algorithm. We therefore
use one of the most popular rescale methods to standardise these features to lie between
0 and 1 based on MinMaxScaler() function in scikit-learn package. The motivation of this
method relies on the robustness to very small standard deviation. This preprocess ensures
individual features of dataset have the same scale that standard normally distributed.

[74]: # Last preprocessing step before machine learning: data rescaling

min_max_scaler = preprocessing.MinMaxScaler()

np_scaled = min_max_scaler.fit_transform(features_old_var)

oldvar_scale = pd.DataFrame(np_scaled)

oldvar_scale.columns = features_old_var.columns

REGION : Volume 7, Number 2, 2020

https://scikit-learn.org/stable/modules/preprocessing.html#standardization-or-mean-removal-and-variance-scaling

M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe R37

Table 11: Four types of features (21 in total) identified in 1984

Name h mean s mean v mean h std s std v std h skew

Baoshan 0.272161 0.052081 0.644148 0.327094 0.072457 0.185309 0.356713
Changning 0.221412 0.051564 0.659894 0.288368 0.075177 0.174455 0.330803
Chongming 0.153807 0.017394 0.742309 0.272162 0.035627 0.102347 0.332916
Fengxian 0.339613 0.112915 0.605758 0.321941 0.122805 0.243621 0.347226
Hongkou 0.249526 0.063704 0.650725 0.309825 0.087439 0.187805 0.347968

Name s skew v skew LBP0 LBP1 LBP2 LBP3 LBP4

Baoshan 0.090057 0.199446 0.035093 0.041960 0.040705 0.068394 0.078389
Changning 0.092504 0.187627 0.036086 0.046078 0.041956 0.059792 0.060040
Chongming 0.051184 0.120603 0.025822 0.029946 0.021757 0.034058 0.039580
Fengxian 0.144392 0.257670 0.055508 0.066468 0.051230 0.072002 0.073767
Hongkou 0.106194 0.200131 0.042018 0.050562 0.043542 0.059326 0.056759

Name LBP5 LBP6 LBP7 LBP8 LBP9 veg mean builtup mean

Baoshan 0.067483 0.040339 0.041101 0.520053 0.066483 -0.002218 0.000611
Changning 0.064422 0.037538 0.043385 0.539416 0.071285 -0.002147 0.000582
Chongming 0.036787 0.024035 0.029158 0.709444 0.049413 -0.000805 0.000190
Fengxian 0.073928 0.052907 0.065099 0.382110 0.106981 -0.007201 0.001499
Hongkou 0.070718 0.039691 0.046490 0.510429 0.080465 -0.004648 -0.000313

[75]: min_max_scaler = preprocessing.MinMaxScaler()

np_scaled = min_max_scaler.fit_transform(features_new_var)

newvar_scale = pd.DataFrame(np_scaled)

newvar_scale.columns = features_new_var.columns

Above two steps are the results of data transformation in 1984 and 2019. To identify
robust and consistent clustering results, we merge them into a single one based on their
common geographical units (see Table 13). The column names ended with ‘ x’ and ‘ y’
represent features extracted in 1984 and 2019, respectively. This table is the one prepared
for the final k-mean clustering analysis. The dominant parameter in k-means clustering is
the number of clusters (i.e., k), determining the optimal numbers of clusters is therefore a
fundamental issue. We select a direct and popular elbow method as an example to assess
the resulting partitions, testing nine different solutions varying k from 2 to 10. Basically,
the idea of elbow method is to define clusters to minimise the total intra-cluster variation
or total within-cluster sum of square (WSS). The optimal number can be determined by
plotting the curve of WSS according to different k clusters and the location of a bend is
considered as an indicator of the appropriate number for k.

[76]: merged_var = pd.merge(oldvar_scale, newvar_scale, left_index = True, right_index = True)

merged_var.head().style.set_caption(’Table 13: Integrated preprocessed features

... identified in 1984 and 2019 seperately’)

[76]: text/html<pandas.io.formats.style.Styler at 0x1f081e1b6d8>

[77]: # elbow analysis

cluster_range = range(2, 11)

cluster_errors = []

for num_clusters in cluster_range:

clusters = KMeans(num_clusters)

clusters.fit(merged_var)

cluster_errors.append(clusters.inertia_)

clusters_df = pd.DataFrame({ "num_clusters":cluster_range,

"cluster_errors": cluster_errors })

plt.figure(figsize=(12,6))

plt.title(’Fig.6: Elbow method to determine the optimal k for k-mean clustering’,y=-0.2)

plt.plot(clusters_df.num_clusters, clusters_df.cluster_errors, marker = "o")

[77]: [<matplotlib.lines.Line2D at 0x1f0817c2550>]image/png<Figure size 864x432 with 1 Axes>

REGION : Volume 7, Number 2, 2020

R38 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

Table 12: Four types of features (21 in total) identified in 2019

Name h mean s mean v mean h std s std v std h skew

Baoshan 0.231070 0.035865 0.638941 0.297847 0.052048 0.180189 0.336779
Changning 0.231849 0.031294 0.649237 0.304689 0.048471 0.167002 0.344394
Chongming 0.157306 0.016473 0.742402 0.282495 0.031843 0.101771 0.345289
Fengxian 0.295539 0.086197 0.605431 0.302731 0.097695 0.243596 0.329388
Hongkou 0.239944 0.037582 0.638613 0.303830 0.055047 0.182938 0.339615

Name s skew v skew LBP0 LBP1 LBP2 LBP3 LBP4

Baoshan 0.067866 0.195591 0.043059 0.047740 0.040768 0.058617 0.068075
Changning 0.062974 0.182483 0.042641 0.050118 0.037668 0.051370 0.058422
Chongming 0.043360 0.119800 0.025468 0.029637 0.023332 0.035217 0.047621
Fengxian 0.115702 0.257234 0.051206 0.061050 0.052882 0.081410 0.097157
Hongkou 0.070552 0.197624 0.047032 0.054172 0.042940 0.054392 0.055014

Name LBP5 LBP6 LBP7 LBP8 LBP9 veg mean builtup mean

Baoshan 0.056809 0.037410 0.045565 0.524189 0.077767 -0.001801 0.001938
Changning 0.061528 0.035235 0.047082 0.539452 0.076482 -0.001515 0.000774
Chongming 0.036412 0.023590 0.028650 0.704424 0.045649 -0.000705 0.000318
Fengxian 0.079233 0.051521 0.060437 0.369931 0.095174 -0.008185 -0.000408
Hongkou 0.068051 0.038789 0.048937 0.507320 0.083353 -0.002057 -0.000277

Figure 6: Elbow method to determine the optimal k for k-mean clustering

Figure 6 indicates that 2 and 6 (i.e. knee in the plot) can be the optimal numbers of k
clusters for the features extracted from both years of satellite imagery. Considering the
context of the paper, the number of 6 is finally assigned to k to fit the kmeans clustering
model, varying labels are subsequently matched to features dataset.

[78]: np.random.seed(0)

k = 6

cls = pd.Series(KMeans(n_clusters=k, max_iter = 1000, n_init = 1000,

random_state = 24).fit_predict(merged_var))

After implementing k-means clustering on our constructed dataset, the label of each
cluster is assigned to the last columns of data for further interpretation (as shown in
Table 14).

[79]: # Assign the each cluster number to the merged data

merged_var = merged_var.assign(lbls=cls)

merged_var.index = features_old_var.index

last columns represent class labels

merged_var.head().style.set_caption(’Table 14: Assign cluster number to each

... administritive area’)

[79]: text/html<pandas.io.formats.style.Styler at 0x1f081e58550>

REGION : Volume 7, Number 2, 2020

M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe R39

T
ab

le
13

:
In

te
gr

at
ed

p
re

p
ro

ce
ss

ed
fe

a
tu

re
s

id
en

ti
fi

ed
in

1
9
8
4

an
d

2
0
1
9

se
p

er
a
te

ly

h
m
ea
n
x

s
m
ea
n
x

v
m
ea
n
x

h
st
d
x

s
st
d
x

v
st
d
x

h
sk
ew

x
s
sk
ew

x
v
sk
ew

x
L
B
P
0
x

L
B
P
1
x

L
B
P
2
x

L
B
P
3
x

L
B
P
4
x

0
0
.6
3
6
9
7
5

0
.3
5
9
6
9
4

0
.2
8
1
1
4
4

1
.0
0
0
0
0
0

0
.4
2
2
4
6
5

0
.5
8
0
1
2
1

1
.0
0
0
0
0
0

0
.4
1
7
0
5
3

0
.5
6
8
1
9
8

0
.2
8
6
0
4
3

0
.3
2
8
9
4
3

0
.5
8
8
4
9
4

0
.7
1
7
5
2
3

0
.8
3
7
8
5
3

1
0
.3
6
3
8
4
3

0
.3
5
4
3
3
4

0
.3
9
6
4
5
0

0
.2
9
5
0
1
8

0
.4
5
3
6
6
4

0
.5
0
4
2
2
0

0
.0
0
0
0
0
0

0
.4
4
3
3
0
5

0
.4
8
3
0
2
8

0
.3
1
6
6
7
7

0
.4
4
1
7
1
6

0
.6
2
7
3
4
6

0
.5
3
7
7
7
2

0
.4
4
1
7
1
0

2
0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

1
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
8
1
5
4
7

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

3
1
.0
0
0
0
0
0

0
.9
9
0
5
3
0

0
.0
0
0
0
0
0

0
.9
0
6
1
8
3

1
.0
0
0
0
0
0

0
.9
8
7
8
7
2

0
.6
3
3
8
6
0

1
.0
0
0
0
0
0

0
.9
8
7
8
0
6

0
.9
1
5
9
2
3

1
.0
0
0
0
0
0

0
.9
1
5
3
9
7

0
.7
9
2
9
2
1

0
.7
3
8
0
5
2

4
0
.5
1
5
1
5
3

0
.4
8
0
2
2
6

0
.3
2
9
3
0
2

0
.6
8
5
6
3
1

0
.5
9
4
3
2
9

0
.5
9
7
5
7
2

0
.6
6
2
4
8
0

0
.5
9
0
1
8
3

0
.5
7
3
1
3
7

0
.4
9
9
7
0
4

0
.5
6
4
4
6
7

0
.6
7
6
6
0
1

0
.5
2
8
0
3
4

0
.3
7
0
8
7
1

L
B
P
5
x

L
B
P
6
x

L
B
P
7
x

L
B
P
8
x

L
B
P
9
x

v
eg

m
ea
n
x

b
u
il
tu
p
m
ea
n
x

h
m
ea
n
y

s
m
ea
n
y

v
m
ea
n
y

h
st
d
y

s
st
d
y

v
st
d
y

h
sk
ew

y

0
0
.6
1
3
0
5
5

0
.5
6
4
7
1
6

0
.3
3
2
2
9
8

0
.7
1
4
9
3
7

0
.0
3
2
8
2
9

0
.6
4
7
6
5
2

0
.7
6
6
9
9
5

0
.4
4
2
1
9
5

0
.2
7
8
1
2
3

0
.3
0
1
0
6
1

0
.4
6
3
1
2
3

0
.3
0
8
2
2
1

0
.5
4
7
5
3
1

0
.5
0
4
9
4
2

1
0
.5
5
1
9
3
3

0
.4
6
7
7
0
7

0
.3
9
5
8
5
0

0
.7
4
4
0
8
2

0
.0
4
2
0
6
3

0
.6
5
4
8
9
9

0
.7
6
4
4
8
0

0
.4
4
6
8
6
0

0
.2
1
2
5
6
0

0
.3
7
0
6
1
6

0
.6
5
9
6
0
3

0
.2
5
4
0
0
2

0
.4
5
5
4
5
8

0
.7
7
3
7
7
1

2
0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

1
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.7
9
0
9
4
1

0
.7
3
0
0
8
5

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

1
.0
0
0
0
0
0

0
.0
2
2
3
0
7

0
.0
0
2
0
0
6

0
.0
0
0
0
0
0

0
.8
0
5
3
3
8

3
0
.7
4
1
7
8
4

1
.0
0
0
0
0
0

1
.0
0
0
0
0
0

0
.5
0
7
3
1
0

0
.1
1
0
7
1
2

0
.1
4
2
2
4
3

0
.8
4
4
8
8
4

0
.8
2
8
6
6
7

1
.0
0
0
0
0
0

0
.0
7
4
6
7
7

0
.6
0
3
3
7
0

1
.0
0
0
0
0
0

0
.9
9
0
2
5
2

0
.2
4
4
0
5
6

4
0
.6
7
7
6
6
9

0
.5
4
2
2
7
0

0
.4
8
2
2
3
7

0
.7
0
0
4
5
1

0
.0
5
9
7
1
8

0
.4
0
1
2
0
0

0
.6
8
6
0
4
4

0
.4
9
5
3
9
2

0
.3
0
2
7
5
5

0
.2
9
8
8
4
2

0
.6
3
4
9
1
3

0
.3
5
3
6
6
6

0
.5
6
6
7
2
8

0
.6
0
5
0
8
3

s
sk
ew

y
v
sk
ew

y
L
B
P
0
y

L
B
P
1
y

L
B
P
2
y

L
B
P
3
y

L
B
P
4
y

L
B
P
5
y

L
B
P
6
y

L
B
P
7
y

L
B
P
8
y

L
B
P
9
y

v
eg

m
ea
n
y

b
u
il
tu
p
m
ea
n
y

0
0
.3
3
8
7
4
7

0
.5
4
1
8
3
7

0
.5
2
6
2
2
1

0
.4
7
2
2
7
4

0
.5
4
8
1
4
2

0
.5
0
6
5
6
1

0
.4
1
0
5
0
1

0
.4
0
6
2
2
0

0
.4
9
4
8
0
1

0
.4
9
9
4
8
7

0
.7
2
6
8
6
6

0
.0
6
0
8
4
8

0
.8
5
6
4
5
1

1
.0
0
0
0
0
0

1
0
.2
7
1
1
2
6

0
.4
4
8
1
2
9

0
.5
1
3
8
9
4

0
.5
3
4
3
1
2

0
.4
5
0
6
8
6

0
.3
4
9
6
8
6

0
.2
1
6
7
6
7

0
.5
0
0
2
0
9

0
.4
1
6
9
2
6

0
.5
4
4
2
9
1

0
.7
4
9
9
9
5

0
.0
5
8
4
1
5

0
.8
9
3
8
5
0

0
.6
9
9
1
8
1

2
0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
7
4
2
3

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

1
.0
0
0
0
0
0

0
.0
0
0
0
0
0

1
.0
0
0
0
0
0

0
.5
8
1
4
3
5

3
1
.0
0
0
0
0
0

0
.9
8
2
5
3
3

0
.7
6
6
4
9
2

0
.8
1
9
5
0
0

0
.9
2
8
9
3
6

1
.0
0
0
0
0
0

0
.9
9
4
1
4
1

0
.8
5
2
8
1
1

1
.0
0
0
0
0
0

0
.9
3
8
6
2
9

0
.4
9
3
0
9
7

0
.0
9
3
8
2
7

0
.0
2
0
2
7
4

0
.3
9
3
9
0
3

4
0
.3
7
5
8
8
0

0
.5
5
6
3
7
4

0
.6
4
3
3
8
3

0
.6
4
0
0
6
2

0
.6
1
6
4
1
2

0
.4
1
5
1
1
1

0
.1
4
8
3
7
4

0
.6
3
0
1
0
1

0
.5
4
4
1
5
3

0
.5
9
9
0
5
4

0
.7
0
1
3
0
2

0
.0
7
1
4
3
2

0
.8
2
2
8
4
4

0
.4
2
7
5
3
8

REGION : Volume 7, Number 2, 2020

R40 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

5 Interpretation

To understand the analysis result, the mean of each feature across each cluster can be
calculated to uncover the feature differences among clusters. A categorical bar-plot shown
below presents how the average of all features changed between 1984 and 2019. Besides,
a choropleth map is created to visualise the spatial distribution of categories/clusters by
varying colours.

[80]: # calculate the mean of features for each class

k6_mean = merged_var.groupby(’lbls’).mean()

k6_mean.style.set_caption(’Table 15: Mean values of each feature at each cluster for

... different years’)

[80]: text/html<pandas.io.formats.style.Styler at 0x1f081654b00>

Table 15 displays the mean values of all features in two years at varying groups.
For more interpretability, a few data munging steps are required to generate visual
representations.

[81]: # Rearrange our data in a way that every row is one feature in a class

k6_mean = k6_mean.stack()

k6_mean.head()

[81]: lbls

0 h_mean_x 0.803863

s_mean_x 0.749195

v_mean_x 0.146109

h_std_x 0.895068

s_std_x 0.749907

dtype: float64

[82]: # convert multi-indices into single index

k6_mean = k6_mean.reset_index()

renmae the columns

k6_mean = k6_mean.rename(columns = {’lbls’: ’Class’,’level_1’: ’Features’, 0: ’Values’})

rename feature names in Feature column

old = k6_mean.loc[k6_mean[’Features’].str.contains(’x’) == True, :]

new = k6_mean.loc[k6_mean[’Features’].str.contains(’y’) == True, :]

add a new column to represent time

old = old.assign(Time = 1984)

new = new.assign(Time = 2019)

remove ’_x’ and ’_y’ in the table to make feature names for both years are the same

old[’Features’] = old[’Features’].str.replace(’_x’, ’’)

new[’Features’] = new[’Features’].str.replace(’_y’, ’’)

[83]: # create a new dataframe to store the mean of each feature each cluster with time

data = pd.concat([old,new])

data.head().style.set_caption(’Table 16: Tidy table represents mean values of features

... for each cluster at different years’)

[83]: text/html<pandas.io.formats.style.Styler at 0x1f08cee1d68>

Table 16 reveals different categorical information, with each row represents the number
of class, the feature name, the mean value of the feature and the year when the feature is
extracted. We can then visualise this table in the bar-plot in Figure 7 to understand the
pattern from image features.

[84]: # visualise the distribution of mean values by features, class and time

g = sns.catplot(data = data, x = ’Features’, y = ’Values’,row = ’Class’,

hue = ’Time’,kind = ’bar’, aspect = 5, height = 3, palette = ’Accent’)

g.fig.suptitle(’Fig.7: Visual representation of patterns extracted from k-mean

... clustering’, y = -0.1, fontsize = 18)

[84]: Text(0.5, -0.1, ’Fig.7: Visual representation of patterns extracted from k-mean

clustering’)

image/png<Figure size 1141.5x1296 with 6 Axes>

REGION : Volume 7, Number 2, 2020

M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe R41

T
ab

le
14

:
A

ss
ig

n
cl

u
st

er
n
u

m
b

er
to

ea
ch

a
d

m
in

is
tr

a
ti

v
e

a
re

a

N
a
m
e

h
m
ea

n
x

s
m
ea

n
x

v
m
ea

n
x

h
st
d
x

s
st
d
x

v
st
d
x

h
sk
ew

x
s
sk
ew

x
v
sk
ew

x
L
B
P
0
x

L
B
P
1
x

L
B
P
2
x

L
B
P
3
x

L
B
P
4
x

B
a
o
sh

a
n

0
.6
3
6
9
7
5

0
.3
5
9
6
9
4

0
.2
8
1
1
4
4

1
.0
0
0
0
0
0

0
.4
2
2
4
6
5

0
.5
8
0
1
2
1

1
.0
0
0
0
0
0

0
.4
1
7
0
5
3

0
.5
6
8
1
9
8

0
.2
8
6
0
4
3

0
.3
2
8
9
4
3

0
.5
8
8
4
9
4

0
.7
1
7
5
2
3

0
.8
3
7
8
5
3

C
h
a
n
g
n
in
g

0
.3
6
3
8
4
3

0
.3
5
4
3
3
4

0
.3
9
6
4
5
0

0
.2
9
5
0
1
8

0
.4
5
3
6
6
4

0
.5
0
4
2
2
0

0
.0
0
0
0
0
0

0
.4
4
3
3
0
5

0
.4
8
3
0
2
8

0
.3
1
6
6
7
7

0
.4
4
1
7
1
6

0
.6
2
7
3
4
6

0
.5
3
7
7
7
2

0
.4
4
1
7
1
0

C
h
o
n
g
m
in
g

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

1
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
8
1
5
4
7

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

F
en

g
x
ia
n

1
.0
0
0
0
0
0

0
.9
9
0
5
3
0

0
.0
0
0
0
0
0

0
.9
0
6
1
8
3

1
.0
0
0
0
0
0

0
.9
8
7
8
7
2

0
.6
3
3
8
6
0

1
.0
0
0
0
0
0

0
.9
8
7
8
0
6

0
.9
1
5
9
2
3

1
.0
0
0
0
0
0

0
.9
1
5
3
9
7

0
.7
9
2
9
2
1

0
.7
3
8
0
5
2

H
o
n
g
k
o
u

0
.5
1
5
1
5
3

0
.4
8
0
2
2
6

0
.3
2
9
3
0
2

0
.6
8
5
6
3
1

0
.5
9
4
3
2
9

0
.5
9
7
5
7
2

0
.6
6
2
4
8
0

0
.5
9
0
1
8
3

0
.5
7
3
1
3
7

0
.4
9
9
7
0
4

0
.5
6
4
4
6
7

0
.6
7
6
6
0
1

0
.5
2
8
0
3
4

0
.3
7
0
8
7
1

N
a
m
e

L
B
P
5
x

L
B
P
6
x

L
B
P
7
x

L
B
P
8
x

L
B
P
9
x

v
eg

m
ea

n
x

b
u
il
tu

p
m
ea

n
x

h
m
ea

n
y

s
m
ea

n
y

v
m
ea

n
y

h
st
d
y

s
st
d
y

v
st
d
y

h
sk
ew

y

B
a
o
sh

a
n

0
.6
1
3
0
5
5

0
.5
6
4
7
1
6

0
.3
3
2
2
9
8

0
.7
1
4
9
3
7

0
.0
3
2
8
2
9

0
.6
4
7
6
5
2

0
.7
6
6
9
9
5

0
.4
4
2
1
9
5

0
.2
7
8
1
2
3

0
.3
0
1
0
6
1

0
.4
6
3
1
2
3

0
.3
0
8
2
2
1

0
.5
4
7
5
3
1

0
.5
0
4
9
4
2

C
h
a
n
g
n
in
g

0
.5
5
1
9
3
3

0
.4
6
7
7
0
7

0
.3
9
5
8
5
0

0
.7
4
4
0
8
2

0
.0
4
2
0
6
3

0
.6
5
4
8
9
9

0
.7
6
4
4
8
0

0
.4
4
6
8
6
0

0
.2
1
2
5
6
0

0
.3
7
0
6
1
6

0
.6
5
9
6
0
3

0
.2
5
4
0
0
2

0
.4
5
5
4
5
8

0
.7
7
3
7
7
1

C
h
o
n
g
m
in
g

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

1
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.7
9
0
9
4
1

0
.7
3
0
0
8
5

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

1
.0
0
0
0
0
0

0
.0
2
2
3
0
7

0
.0
0
2
0
0
6

0
.0
0
0
0
0
0

0
.8
0
5
3
3
8

F
en

g
x
ia
n

0
.7
4
1
7
8
4

1
.0
0
0
0
0
0

1
.0
0
0
0
0
0

0
.5
0
7
3
1
0

0
.1
1
0
7
1
2

0
.1
4
2
2
4
3

0
.8
4
4
8
8
4

0
.8
2
8
6
6
7

1
.0
0
0
0
0
0

0
.0
7
4
6
7
7

0
.6
0
3
3
7
0

1
.0
0
0
0
0
0

0
.9
9
0
2
5
2

0
.2
4
4
0
5
6

H
o
n
g
k
o
u

0
.6
7
7
6
6
9

0
.5
4
2
2
7
0

0
.4
8
2
2
3
7

0
.7
0
0
4
5
1

0
.0
5
9
7
1
8

0
.4
0
1
2
0
0

0
.6
8
6
0
4
4

0
.4
9
5
3
9
2

0
.3
0
2
7
5
5

0
.2
9
8
8
4
2

0
.6
3
4
9
1
3

0
.3
5
3
6
6
6

0
.5
6
6
7
2
8

0
.6
0
5
0
8
3

N
a
m
e

s
sk
ew

y
v
sk
ew

y
L
B
P
0
y

L
B
P
1
y

L
B
P
2
y

L
B
P
3
y

L
B
P
4
y

L
B
P
5
y

L
B
P
6
y

L
B
P
7
y

L
B
P
8
y

L
B
P
9
y

v
eg

m
ea

n
y

b
u
il
tu

p
m
ea

n
y

lb
ls

B
a
o
sh

a
n

0
.3
3
8
7
4
7

0
.5
4
1
8
3
7

0
.5
2
6
2
2
1

0
.4
7
2
2
7
4

0
.5
4
8
1
4
2

0
.5
0
6
5
6
1

0
.4
1
0
5
0
1

0
.4
0
6
2
2
0

0
.4
9
4
8
0
1

0
.4
9
9
4
8
7

0
.7
2
6
8
6
6

0
.0
6
0
8
4
8

0
.8
5
6
4
5
1

1
.0
0
0
0
0
0

1
C
h
a
n
g
n
in
g

0
.2
7
1
1
2
6

0
.4
4
8
1
2
9

0
.5
1
3
8
9
4

0
.5
3
4
3
1
2

0
.4
5
0
6
8
6

0
.3
4
9
6
8
6

0
.2
1
6
7
6
7

0
.5
0
0
2
0
9

0
.4
1
6
9
2
6

0
.5
4
4
2
9
1

0
.7
4
9
9
9
5

0
.0
5
8
4
1
5

0
.8
9
3
8
5
0

0
.6
9
9
1
8
1

1
C
h
o
n
g
m
in
g

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
7
4
2
3

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.0
0
0
0
0
0

1
.0
0
0
0
0
0

0
.0
0
0
0
0
0

1
.0
0
0
0
0
0

0
.5
8
1
4
3
5

2
F
en

g
x
ia
n

1
.0
0
0
0
0
0

0
.9
8
2
5
3
3

0
.7
6
6
4
9
2

0
.8
1
9
5
0
0

0
.9
2
8
9
3
6

1
.0
0
0
0
0
0

0
.9
9
4
1
4
1

0
.8
5
2
8
1
1

1
.0
0
0
0
0
0

0
.9
3
8
6
2
9

0
.4
9
3
0
9
7

0
.0
9
3
8
2
7

0
.0
2
0
2
7
4

0
.3
9
3
9
0
3

3
H
o
n
g
k
o
u

0
.3
7
5
8
8
0

0
.5
5
6
3
7
4

0
.6
4
3
3
8
3

0
.6
4
0
0
6
2

0
.6
1
6
4
1
2

0
.4
1
5
1
1
1

0
.1
4
8
3
7
4

0
.6
3
0
1
0
1

0
.5
4
4
1
5
3

0
.5
9
9
0
5
4

0
.7
0
1
3
0
2

0
.0
7
1
4
3
2

0
.8
2
2
8
4
4

0
.4
2
7
5
3
8

1

REGION : Volume 7, Number 2, 2020

R42 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

T
ab

le
1
5
:

M
ea

n
va

lu
es

o
f

ea
ch

fea
tu

re
a
t

ea
ch

clu
ster

fo
r

d
iff

eren
t

years

lb
ls

h
m
ea

n
x

s
m
ea

n
x

v
m
ea

n
x

h
std

x
s
std

x
v
std

x
h
sk
ew

x
s
sk
ew

x
v
sk
ew

x
L
B
P
0
x

L
B
P
1
x

L
B
P
2
x

L
B
P
3
x

L
B
P
4
x

0
0
.8
0
3
8
6
3

0
.7
4
9
1
9
5

0
.1
4
6
1
0
9

0
.8
9
5
0
6
8

0
.7
4
9
9
0
7

0
.8
3
4
3
3
0

0
.6
3
3
3
2
2

0
.7
2
0
2
4
9

0
.8
2
3
0
0
5

0
.4
5
4
3
8
9

0
.5
6
5
9
4
6

0
.8
2
1
5
2
8

0
.9
7
3
2
2
0

0
.9
4
9
1
4
1

1
0
.4
2
6
1
9
5

0
.3
8
1
6
6
4

0
.3
8
4
9
5
5

0
.5
4
3
4
9
4

0
.4
8
1
6
8
6

0
.5
2
3
4
8
6

0
.4
5
0
6
0
1

0
.4
7
8
5
8
6

0
.5
0
4
1
4
9

0
.3
8
2
8
4
9

0
.4
4
4
5
4
3

0
.5
7
4
5
4
5

0
.5
1
0
7
9
5

0
.4
0
8
6
1
3

2
0
.1
1
3
0
9
7

0
.0
8
8
4
7
0

0
.8
3
7
3
0
5

0
.2
1
0
9
3
9

0
.1
1
8
4
7
8

0
.1
2
7
1
5
1

0
.3
1
6
5
0
6

0
.1
0
7
5
3
4

0
.1
2
4
4
6
9

0
.0
7
0
3
0
1

0
.0
8
9
8
5
0

0
.1
6
2
6
2
4

0
.1
3
9
9
4
5

0
.0
8
9
3
1
7

3
0
.9
4
9
8
5
6

0
.9
9
5
2
6
5

0
.0
0
4
5
5
9

0
.8
7
6
4
1
5

0
.9
9
1
0
4
8

0
.9
9
3
9
3
6

0
.6
7
6
3
8
7

0
.9
7
5
6
8
8

0
.9
9
3
9
0
3

0
.8
8
2
7
1
7

0
.9
5
7
5
6
2

0
.9
5
7
6
9
9

0
.8
7
3
8
6
7

0
.7
9
8
2
4
0

4
0
.7
2
1
4
7
8

0
.9
7
9
4
7
5

0
.1
1
4
0
1
7

0
.5
6
7
5
2
8

0
.9
9
8
7
6
2

0
.9
3
3
6
1
9

0
.2
4
4
5
5
7

0
.9
7
1
7
9
6

0
.9
2
5
7
9
1

1
.0
0
0
0
0
0

0
.9
9
0
2
7
3

0
.8
4
5
7
2
6

0
.6
6
8
6
7
1

0
.4
0
7
6
0
5

5
0
.4
7
1
7
1
9

0
.4
2
7
6
2
2

0
.3
7
3
3
5
8

0
.6
3
4
7
7
3

0
.5
5
4
2
0
7

0
.5
5
9
0
6
2

0
.5
5
4
3
9
1

0
.5
6
0
4
2
6

0
.5
3
4
5
5
5

0
.4
2
6
2
1
2

0
.5
0
2
6
5
4

0
.6
4
7
7
5
2

0
.5
1
6
1
2
6

0
.3
4
5
3
7
4

lb
ls

L
B
P
5
x

L
B
P
6
x

L
B
P
7
x

L
B
P
8
x

L
B
P
9
x

v
eg

m
ea

n
x

b
u
iltu

p
m
ea

n
x

h
m
ea

n
y

s
m
ea

n
y

v
m
ea

n
y

h
std

y
s
std

y
v
std

y
h
sk
ew

y

0
0
.7
1
4
1
8
8

0
.7
6
7
0
2
5

0
.5
6
7
4
1
5

0
.6
0
3
6
7
1

0
.0
6
2
7
5
7

0
.3
3
6
4
7
6

0
.9
6
4
0
2
1

0
.6
2
1
4
2
3

0
.5
8
2
9
8
9

0
.1
2
5
3
7
8

0
.6
2
1
1
4
5

0
.6
2
1
7
5
0

0
.7
8
1
0
6
3

0
.4
6
6
9
7
5

1
0
.4
9
1
3
6
8

0
.4
8
0
1
6
9

0
.4
1
5
9
2
4

0
.7
4
7
5
3
3

0
.0
4
5
7
8
4

0
.5
7
9
3
2
5

0
.7
8
2
7
3
2

0
.4
0
0
4
5
9

0
.2
3
3
5
6
2

0
.3
7
0
7
4
6

0
.4
4
9
3
2
5

0
.2
7
9
2
1
0

0
.4
7
9
7
2
6

0
.5
2
0
6
1
0

2
0
.1
1
4
7
2
6

0
.1
4
0
0
3
4

0
.0
8
3
0
1
8

0
.9
4
1
0
7
0

0
.0
0
9
1
3
7

0
.7
3
9
3
2
6

0
.7
6
8
4
7
4

0
.0
8
1
7
3
4

0
.0
4
2
8
0
1

0
.8
3
5
5
2
3

0
.1
4
4
0
2
2

0
.0
6
2
3
2
6

0
.1
1
4
2
5
6

0
.7
5
7
3
3
2

3
0
.8
7
0
8
9
2

0
.9
9
6
5
1
6

0
.9
4
3
7
0
7

0
.4
9
5
6
0
1

0
.1
0
6
9
4
6

0
.0
7
1
1
2
1

0
.8
0
8
6
8
0

0
.9
1
4
3
3
3

0
.8
4
9
3
6
1

0
.0
8
7
7
6
4

0
.5
3
9
9
0
9

0
.8
4
5
2
3
2

0
.9
9
5
1
2
6

0
.1
2
2
0
2
8

4
0
.8
4
7
0
4
9

0
.8
1
9
9
1
2

0
.9
6
1
7
1
3

0
.5
3
8
4
4
2

0
.1
1
4
0
7
1

1
.0
0
0
0
0
0

0
.0
0
0
0
0
0

0
.8
8
3
4
7
1

0
.5
2
9
2
1
5

0
.0
0
0
0
0
0

1
.0
0
0
0
0
0

0
.5
4
6
8
3
2

0
.8
7
1
7
7
9

0
.6
9
8
4
8
8

5
0
.2
9
9
7
6
8

0
.5
2
8
1
6
5

0
.5
6
8
0
0
6

0
.0
0
0
0
0
0

1
.0
0
0
0
0
0

0
.5
4
9
4
8
9

0
.7
3
3
9
7
7

0
.4
2
8
8
1
6

0
.2
0
7
9
3
2

0
.3
2
9
3
5
8

0
.4
3
5
9
1
7

0
.2
4
6
7
7
8

0
.5
0
5
7
6
7

0
.4
0
9
7
5
5

lb
ls

s
sk
ew

y
v
sk
ew

y
L
B
P
0
y

L
B
P
1
y

L
B
P
2
y

L
B
P
3
y

L
B
P
4
y

L
B
P
5
y

L
B
P
6
y

L
B
P
7
y

L
B
P
8
y

L
B
P
9
y

v
eg

m
ea

n
y

b
u
iltu

p
m
ea

n
y

0
0
.6
2
9
1
4
2

0
.7
6
8
8
3
6

0
.5
5
9
7
1
4

0
.5
8
5
2
0
6

0
.7
6
0
9
5
5

0
.8
4
1
4
9
2

0
.8
3
8
1
5
7

0
.7
2
2
8
3
0

0
.7
9
4
0
9
3

0
.6
5
2
1
7
2

0
.6
0
0
3
5
0

0
.0
7
0
4
0
1

0
.7
1
4
0
1
6

0
.8
3
5
8
3
2

1
0
.3
0
0
6
7
1

0
.4
7
0
7
6
6

0
.4
6
5
9
5
8

0
.4
5
1
2
7
7

0
.5
1
0
3
4
8

0
.4
4
6
9
1
3

0
.3
0
9
0
6
0

0
.4
7
0
5
1
4

0
.4
6
6
2
7
8

0
.4
6
6
2
8
2

0
.7
4
8
7
8
2

0
.0
5
3
4
4
3

0
.8
5
2
0
3
5

0
.6
2
2
8
5
4

2
0
.0
7
7
1
9
6

0
.1
1
4
2
1
8

0
.0
5
0
6
0
0

0
.0
5
4
1
9
4

0
.1
4
0
3
8
4

0
.1
7
2
0
6
0

0
.1
5
8
4
8
6

0
.1
4
7
8
8
5

0
.1
1
5
3
3
9

0
.0
5
4
2
1
5

0
.9
3
9
6
4
2

0
.0
0
6
6
1
9

0
.9
5
9
4
2
1

0
.5
7
2
2
8
0

3
0
.8
7
0
6
9
9

0
.9
9
1
2
6
6

0
.8
8
3
2
4
6

0
.9
0
9
7
5
0

0
.9
6
4
4
6
8

0
.9
4
0
4
7
0

0
.8
0
8
6
5
6

0
.8
6
3
4
0
4

0
.9
8
7
5
7
3

0
.9
6
9
3
1
5

0
.4
8
8
0
8
9

0
.1
0
4
2
9
2

0
.0
1
0
1
3
7

0
.1
9
6
9
5
2

4
0
.5
7
5
9
0
3

0
.8
6
6
9
1
7

0
.9
8
1
2
8
5

0
.9
0
5
5
7
5

0
.9
0
7
5
5
7

0
.6
6
0
8
4
0

0
.4
8
7
0
1
5

1
.0
0
0
0
0
0

0
.9
5
0
0
3
3

0
.9
1
3
0
2
7

0
.5
2
1
4
2
9

0
.1
0
7
4
8
5

0
.7
1
3
3
0
9

0
.9
8
6
1
3
9

5
0
.2
8
0
9
3
0

0
.4
9
9
2
0
5

0
.6
2
1
6
2
6

0
.5
2
5
6
5
9

0
.5
7
0
1
8
9

0
.4
1
6
5
7
2

0
.1
1
6
0
7
2

0
.2
2
1
3
2
4

0
.4
4
5
8
4
2

0
.7
1
8
3
6
0

0
.0
0
0
0
0
0

1
.0
0
0
0
0
0

0
.8
9
5
1
1
2

0
.5
6
8
9
8
8

REGION : Volume 7, Number 2, 2020

M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe R43

Figure 7: Visual representation of patterns extracted from k-mean clustering

[85]: # plot clustering results for two different years

f, ax = plt.subplots(1, figsize=(10, 12))

plot cluster results

poly = poly.drop(’coords’, axis = 1)

poly.assign(lbls=cls)\

.plot(column=’lbls’, categorical=True, linewidth=1, alpha=0.5, ax=ax,

legend = True,cmap = ’Accent’, edgecolor = ’black’)

add labels for geographical units

poly[’coords’]=poly[’geometry’].apply(lambda x:x.representative_point().coords[:])

poly[’coords’]=[coords[0] for coords in poly[’coords’]]

for idx, row in poly.iterrows():

ax.annotate(text=row[’Name’],xy=row[’coords’],va=’center’,ha=’center’,

alpha = 0.8, fontsize = 10)

plt.title(’Fig.8: Spatial distribution of classification results’, y=-0.01)

remove axes and set aspect ratio so that the data units are the same in every direction

ax.axis(’off’)

ax.axis(’equal’)

[85]: (290053.0696196473, 407301.6741094636, 3389866.639388826, 3533566.430983904)

image/png<Figure size 720x864 with 1 Axes>

REGION : Volume 7, Number 2, 2020

R44 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

Table 16: Tidy table represents mean values of features for each cluster at different years

Class Features Values Time

0 0 h mean 0.803863 1984
1 0 s mean 0.749195 1984
2 0 v mean 0.146109 1984
3 0 h std 0.895068 1984
4 0 s std 0.749907 1984

Figure 8: Spatial distribution of classification results

From Figures 7 and 8 we can see a few striking differences across clusters, or classes.
For class 4, only one administrative area (i.e. Huangpu area) is grouped, displayed in the
middle of north-east areas. The mean values for this class are mostly high in both years
except a couple of features such as v mean, LBP4 and LBP9 features. The brightness
(v mean) for this area is highly low and it became completely black over time. H mean
value is high in both years, demonstrating that the dominating colour is blue, which
represent water. This corresponds to the famous area of The Bund, with its river skyline,
which is part of this polygon. The vegetation built-up features indicate that this area
has experienced a remarkable change, from more vegetation and few buildings to less
vegetation and completely constructed/urbanisation.

Class 0 and Class 1 are relatively consistent compared to other classes, implying that
the urban areas in purple and green colours almost remained unchanged during the past
35 years. Besides, these two classes have similar transformation such as more vegetation
coverage and less buildings for the current year of 2019. However, Class 0 has more
brightness and more green colour based on v mean, h mean and veg mean features, and
Class 1 has higher h mean, h std, h skew and built-up mean, implying these two areas
have water covered and were highly constructed.

Class 2 distributed at north and middle-west areas in the map, which is extremely
diverse and unique among all categories. It has the highest brightness features and LBP8
texture features, while the rest mean values of colour and texture features are highly
low, especially for LBP9 where almost zero values in both years. The values for h mean,
s mean and v mean display that the primary colour for these areas is red with little grey
and much brightness, representing that these areas include more bare ground or soil
and thus probably rural areas. Adversely, Class 5 has zero values for LBP8 but highest

REGION : Volume 7, Number 2, 2020

M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe R45

values for LBP9 in both years. It contains only one administrative area (i.e. Zhabei area),
surrounded by Class 4 and Class 0. Similarly, the area in Class 5 has more vegetation
but slightly less built-up areas over the past years. Class 3 contains two areas distributed
at the south and surrounded by Class 1 from the map. The feature values in Class 3 are
mostly extremely high, while the veg mean and built-up mean for current year are the
least, thus indicating that these areas have more water over the time.

6 Conclusion

Urbanisation has significantly changed the interaction between humans and the surround-
ing environment, which poses new challenges in a multitude of fields including construction
and city planning, hazard mitigation or disease control. It is essential to quantify and
assess urbanisation over time to enable policy makers and planners to make informed
decisions about future urban changes. The sustainability of urban spaces will become
particularly important in the light of future climate change. Satellite imagery could play
a vital role in assessing cities for their livability by i.e. quantifying the greenspace to built
environment ratio. This notebook shows the potential of open source satellite imagery to
exploring urban changes and proposes a simple method framework for automatic data
collection and features extraction to determine urbanisation over time using Python as a
tool.

References

Barsi JA, Lee K, Kvaran G, Markham BL, Pedelty JA (2014a) The spectral response of
the Landsat-8 operational land imager. Remote Sensing 6: 10232–10251. CrossRef.

Barsi JA, Schott JR, Hook SJ, Raqueno NG, Markham BL, Radocinski RG
(2014b) Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration.
Remote Sensing 6: 11607–11626. CrossRef.

Burchfield M, Overman HG, Puga D, Turner MA (2006) Causes of sprawl: A portrait
from space. The Quarterly Journal of Economics 121: 587–633. CrossRef.

Giada S, De Groeve T, Ehrlich D, Soille P (2003) Information extraction from very high
resolution satellite imagery over Lukole refugee camp, Tanzania. International Journal
of Remote Sensing 24: 4251–4266. CrossRef.

Glaeser E, Henderson JV (2017) Urban economics for the developing world: An introduc-
tion. Journal of Urban Economics 98: 1–5. CrossRef.

Ibrahim MR, Haworth J, Cheng T (2020) Understanding cities with machine eyes: A
review of deep computer vision in urban analytics. Cities 96. CrossRef.

Keen N (2005) Color moments. School of informatics, University of Edinburgh

Kit O, Lüdeke M (2013) Automated detection of slum area change in Hyderabad, In-
dia using mulittemporal satellite imagery. Journal of Photogrammetry and Remote
Sensing 83: 130–137. CrossRef.

Knight EJ, Kvaran G (2014) Landsat-8 operational land imager design, characterization
and performance. Remote Sensing 6: 10286–10305. CrossRef.

Kohli D, Sliuzas R, Stein A (2016) Urban slum detection using texture and spatial metrics
derived from satellite imagery. Journal of Spatial Science 61: 405–426. CrossRef.

Ministry of Civial Affairs of the People’s Republic of China (2018) Change of administrative
divisions at or above the county level. Available at: http://202.108.98.30/description?-
dcpid=1 [Accessed 10 Oct. 2019]

NASA (2000) Normalized difference vegetation index (NDVI). Available at: https://earth-
observatory.nasa.gov/features/MeasuringVegetation/measuring vegetation 2.php [Ac-
cessed 30 Oct. 2019]

REGION : Volume 7, Number 2, 2020

https://doi.org/10.3390/rs61010232
https://doi.org/10.3390/rs61111607
https://doi.org/10.1162/qjec.2006.121.2.587
https://doi.org/10.1080/0143116021000035021
https://doi.org/10.1016/j.jue.2017.01.003
https://doi.org/10.1016/j.cities.2019.102481
https://doi.org/10.1016/j.isprsjprs.2013.06.009
https://doi.org/10.3390/rs61110286
https://doi.org/10.1080/14498596.2016.1138247
http://202.108.98.30/description?dcpid=1
http://202.108.98.30/description?dcpid=1
https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_2.php
https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_2.php

R46 M. Chen, D. Fahrner, D. Arribas-Bel, F. Rowe

NASA (2019) Landsat science. Available at: https://landsat.gsfc.nasa.gov/ [Accessed 10
Sep. 2019]

Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with
classification based on feature distributions. Pattern Recognition 19: 51–59. CrossRef.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
Prettenhofer P, Weiss R, Dubourg V, Vanderplas J (2011) Scikit-learn: Machine learning
in Python. Journal of machine learning research 12: 2825–2830

Roy DP, Wulder MA, Loveland TR, Woodcock CE, Allen RG, Anderson MC, Helder D,
Irons JR, Johnson DM, Kennedy R, Scambos TA, Schaaf CB, Schott JR, Sheng Y,
Vermote EF, Belward AS, Bindschadler R, Cohen WB, Gao F, Hipple JD, Hostert P,
Huntington J, Justice CO, Kilic A, Kovalskyy V, Lee ZP, Lymburner L, Masek JG,
McCorkel J, Shuai Y, Trezza R, J. Vogelmann J, R.H. Wynne RH, Zhu Z (2014) Landsat-
8: Science and product vision for terrestrial global change research. Remote sensing of
Environment 145: 154–172. CrossRef.

United Nations (2019) World urbanization prospects 2018: Highlights. United Nations,
Department of Economic and Social Affairs, Population Division (ST/ESA/SER.A/421)

Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index in automatically
mapping urban areas from TM imagery. International Journal of Remote Sensing 24:
583–594. CrossRef.

c© 2020 by the authors. Licensee: REGION – The Journal of ERSA, European
Regional Science Association, Louvain-la-Neuve, Belgium. This article is distri-

buted under the terms and conditions of the Creative Commons Attribution, Non-Commercial
(CC BY NC) license (http://creativecommons.org/licenses/by-nc/4.0/).

REGION : Volume 7, Number 2, 2020

https://landsat.gsfc.nasa.gov/
https://doi.org/10.1016/0031-3203(95)00067-4
https://doi.org/10.1016/j.rse.2014.02.001
https://doi.org/10.1080/01431160304987
http://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Data and Study Area
	Landsat Imagery
	Study Area
	Data download and pre-processing
	Landsat imagery download
	Image Cropping
	Image mosaic
	Natural-colour (True-colour) composition

	Feature extraction
	Image processing
	Colour features
	Texture features
	Vegetation and built-up features
	Vegetation features
	Built-up features

	Feature clustering
	Interpretation
	Conclusion

