
Volume 6, Number 3, 2019, 17–37 journal homepage: region.ersa.org
DOI: 10.18335/region.v6i3.276

Demonstrating the utility of machine learning innova-
tions in address matching to spatial socio-economic ap-
plications∗

Sam Comber1

1 University of Liverpool, Liverpool, United Kingdom

Received: 16 August 2019/Accepted: 30 December 2019

Abstract. The last decade has heralded an unprecedented rise in the number, frequency
and availability of data sources. Yet they are often incomplete, meaning data fusion is
required to enhance their quality and scope. In the context of spatial analysis, address
matching is critical to enhancing household socio-economic and demographic character-
istics. Matching administrative, commercial, or lifestyle data sources to items such as
household surveys has the potential benefits of improving data quality, enabling spatial
data visualisation, and the lowering of respondent burden in household surveys. Typically
when a practitioner has high quality data, unique identifiers are used to facilitate a direct
linkage between household addresses. However, real-world databases are often absent of
unique identifiers to enable a one-to-one match. Moreover, irregularities between the text
representations of potential matches mean extensive cleaning of the data is often required
as a pre-processing step. For this reason, practitioners have traditionally relied on two
linkage techniques for facilitating matches between the text representations of addresses
that are broadly divided into deterministic or mathematical approaches. Deterministic
matching consists of constructing hand-crafted rules that classify address matches and
non-matches based on specialist domain knowledge, while mathematical approaches have
increasingly adopted machine learning techniques for resolving pairs of addresses to a
match. In this notebook we demonstrate methods of the latter by demonstrating the
utility of machine learning approaches to the address matching work flow. To achieve
this, we construct a predictive model that resolves matches between two small datasets of
restaurant addresses in the US. While the problem case may seem trivial, the intention of
the notebook is to demonstrate an approach that is reproducible and extensible to larger
data challenges. Thus, in the present notebook, we document an end-to-end pipeline
that is replicable and instructive towards assisting future address matching problem cases
faced by the regional scientist.

1 Introduction

Our overarching objective is to demonstrate how machine learning can be integrated into
the address matching work flow. By definition, address matching pertains to the process
of resolving pairs of records with a spatial footprint. While geospatial matching links the
geometric representations of spatial objects, address matching typically involves linking
the text-based representations of address pairs. The utility of address matching, and

∗This paper is available as computational notebook on the REGION webpage.

17

18 S. Comber

record linkage in general, lies in the ability to unlock attributes from sources of data that
cannot be linked by traditional means. This is often because the datasets lack a common
key to resolve a join between the address of a premise. Two example applications of
address matching uses include: the linkage of historical censuses across time for exploring
economic and geographic mobility across multiple generations (Ruggles et al. 2018), and
exploring how early-life hazardous environmental exposure, socio-economic conditions,
or natural disasters impact the health and economic outcomes of individuals living in
particular residential locations (Cayo, Talbot 2003, Reynolds et al. 2003, Baldovin et al.
2015).

For demonstrative purposes, we rely on small a set of addresses from the Fodors and
Zagat restaurant guides that contain 112 matched addresses for training a predictive
model that resolves address pairs to matches and non-matches. In a real-world application,
training a machine learning model on a small sample of matched addresses could be used
to resolve matches between the remaining addresses of a larger dataset. While we use the
example of restaurant addresses, these could easily be replaced by addresses from a far
less trivial source and the work flow required to implement the address matching exercise
would remain the same. Therefore, it is the intention of this guide to provide insight on
how the work flow of a supervised address matching work flow proceeds, and to inspire
interested users to scale the supplied code to larger and more interesting problems.

2 Packages and dependencies

[1]: %matplotlib inline

import os

import uuid

import warnings

from IPython.display import HTML

load external libraries

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

import jellyfish

import recordlinkage as rl

import seaborn as sns

from postal.parser import parse_address # CRF parser

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import cross_validate, train_test_split

from sklearn.metrics import precision_score, recall_score, f1_score, confusion_matrix

configure some settings

np.random.seed(123)

sns.set_style('whitegrid')
pd.set_option('display.max_colwidth', -1)

warnings.simplefilter(action='ignore', category=FutureWarning)

def hover(hover_color="#add8e6"):

return dict(selector="tbody tr:hover",

props=[("background-color", "%s" % hover_color)])

table CSS

styles = [

#table properties

dict(selector=" ",

props=[("margin","0"),

("font-family",'"Helvetica", "Arial", sans-serif'),
("border-collapse", "collapse"),

("border","none"), ("border-style", "hidden")]),

dict(selector="td", props = [("border-style", "hidden"),

("border-collapse", "collapse")]),

#header color

dict(selector="thead",

props=[("background-color","#a4dbc8")]),

REGION : Volume 6, Number 3, 2019

S. Comber 19

#background shading

dict(selector="tbody tr:nth-child(even)",

props=[("background-color", "#fff")]),

dict(selector="tbody tr:nth-child(odd)",

props=[("background-color", "#eee")]),

#header cell properties

dict(selector="th",

props=[("text-align", "center"),

("border-style", "hidden"),

("border-collapse", "collapse")]),

hover()

]

3 Data loading, cleaning and segmentation

To begin our exercise we specify the file location that contains the entirety of the 112
Zagat and Fodor matched address pairs. This file can be downloaded from the dedicated
Github repository that accompanies the paper (https://github.com/SamComber/address -
matching workflow) using the wget command.

[2]: ! wget https://raw.githubusercontent.com/SamComber/address_matching_workflow/master/

...zagat_fodor_matched.txt

[2]: --2019-12-21 09:11:31-- https://raw.githubusercontent.com/SamComber/address_matching_

workflow/master/zagat_fodor_matched.txt

Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 199.232.56.133

Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|199.232.56.133|:443

... connected.

HTTP request sent, awaiting response... 200 OK

Length: 19939 (19K) [text/plain]

Saving to: ‘zagat_fodor_matched.txt’

zagat_fodor_matched 100%[===================>] 19.47K --.-KB/s in 0.03s

2019-12-21 09:11:32 (670 KB/s) - ‘zagat_fodor_matched.txt’ saved [19939/19939]

[3]: f = 'zagat_fodor_matched.txt'

Address matching is principally a data quality challenge. Similar to other areas of
data analysis, when the quality of input data to the match classification is low, the output
generated will typically be of low accuracy (Christen 2012). Problematically, most address
databases we encounter in the real world are inconsistent, are missing of several values,
and lack standardisation. Thus, a first step in the address matching work flow is to
increase the quality of input data. In this way we increase the accuracy, completeness
and consistency of our address records, which increases the ease in which they can be
linked by the techniques we apply later on. Typically this stage begins by parsing the
text representations of addresses into rows of a dataframe.

[4]: # load matched addresses, remove comment lines and reshape into two columns

data = pd.read_csv(f, comment='#',
header=None,

names=['address']).values.reshape(-1, 2)

matched_address = pd.DataFrame(data, columns=['addr_zagat', 'addr_fodor'])

[5]: print('{} matched addresses loaded.'.format(matched_address.shape[0]))
matched_address.head(10).style.set_table_styles(styles)

REGION : Volume 6, Number 3, 2019

https://github.com/SamComber/address_matching_workflow
https://github.com/SamComber/address_matching_workflow

20 S. Comber

Table 1: Output produced by code 5

addr zagat addr fodor

0 Arnie Morton’s of Chicago 435 S. La Cienega Arnie Morton’s of Chicago 435 S. La Cienega
Blvd. Los Angeles 90048 310-246-1501 Blvd. Los Angeles 90048 310/246-1501
Steakhouses American

1 Art’s Deli 12224 Ventura Blvd. Studio City Art’s Delicatessen 12224 Ventura Blvd.
91604 818-762-1221 Delis Studio City 91604 818/762-1221 American

2 Bel-Air Hotel 701 Stone Canyon Rd. Bel Air Hotel Bel-Air 701 Stone Canyon Rd. Bel Air
90077 310-472-1211 Californian 90077 310/472-1211 Californian

3 Cafe Bizou 14016 Ventura Blvd. Sherman Cafe Bizou 14016 Ventura Blvd. Sherman
Oaks 91423 818-788-3536 French Bistro Oaks 91423 818/788-3536 French

4 Campanile 624 S. La Brea Ave. Los Angeles Campanile 624 S. La Brea Ave. Los Angeles
90036 213-938-1447 Californian 90036 213/938-1447 American

5 Chinois on Main 2709 Main St. Santa Mo- Chinois on Main 2709 Main St. Santa Mo-
nica 90405 310-392-9025 Pacific New Wave nica 90405 310/392-9025 French

6 Citrus 6703 Melrose Ave. Los Angeles Citrus 6703 Melrose Ave. Los Angeles
90038 213-857-0034 Californian 90038 213/857-0034 Californian

7 Fenix at the Argyle 8358 Sunset Blvd. W. Fenix 8358 Sunset Blvd. West Hollywood
Hollywood 90069 213-848-6677 French (New) 90069 213/848-6677 American

8 Granita 23725 W. Malibu Rd. Malibu Granita 23725 W. Malibu Rd. Malibu
90265 310-456-0488 Californian 90265 310/456-0488 Californian

9 Grill The 9560 Dayton Way Beverly Hills Grill on the Alley 9560 Dayton Way Los
90210 310-276-0615 American (Traditional) Angeles 90210 310/276-0615 American

[5]: 112 matched addresses loaded.

Output in Table 1

A series of data cleaning exercises will then modify the data in ways that support the
application of the linkage techniques. This might involve writing data cleaning scripts
that convert all letters to lowercase characters, delete leading and trailing whitespaces,
remove unwanted characters and tokens such as punctuation, or using hard-coded look-up
tables to find and replace particular tokens. All together coding these steps contributes
towards a standard form between the two address databases the user is attempting to
match. This is important because standards between the two sources of address data
under consideration will typically differ due to different naming conventions.

In the following cell blocks, we execute these steps by standardising our addresses.
More specifically, we remove non-address components, convert all text to lower case and
remove punctuation and non-alphanumeric characters.

[6]: # our rows contain non-address components such as phone number and

restaurant type so lets parse these using regular expressions into new columns

zagat_pattern = r"(?P<address>.*?)(?P<phone_number>\b\d{3}\-\d{3}\-\d{4}\b)(?

...P<category>.*$)"

fodor_pattern = r"(?P<address>.*?)(?P<phone_number>\b\d{3}\/\d{3}\-\d{4}\b)(?

...P<category>.*$)"

matched_address[["addr_zagat", "phone_number_zagat", "category_zagat"]] =

...matched_address["addr_zagat"].str.extract(zagat_pattern)

matched_address[["addr_fodor", "phone_number_fodor", "category_fodor"]] =

...matched_address["addr_fodor"].str.extract(fodor_pattern)

[7]: # standardise dataframe by converting all strings to lower case

matched_address = matched_address.applymap(lambda row : row.lower() if type(row) ==

... str else row)

remove punctuation and non-alphanumeric characters

matched_address['addr_zagat'] = matched_address['addr_zagat'].str.replace('[^\w\s]',’’)
matched_address['addr_fodor'] = matched_address['addr_fodor'].str.replace('[^\w\s]','')

REGION : Volume 6, Number 3, 2019

S. Comber 21

3.1 Segmentation of address string into field columns

After removing unwanted characters and tokens, our next step is to segment the entire
address string into tagged attribute values. Addresses rarely come neatly formatted into
sensible fields that identify each component, and so segmentation is a vital and often
overlooked stage of the work flow. For example, an address might come in an unsegmented
format such as “19 Water St. New York 11201”. Our objective is then to segment (or
label) this address into the appropriate columns for street number, street name, city and
postcode. When we segment both sets of addresses from the datasets we intend to link,
we build well-defined output fields that are suitable for matching.

In our case we use a statistical segmentation tool called Libpostal which is a Con-
ditional Random Fields (CRFs) model trained on OpenStreetMap addresses. Before
using the Python bindings, users are required to install the Libpostal C library first
(see https://github.com/openvenues/pypostal#installation for installation instructions).
CRFs are popular methods in natural language processing (NLP) for predicting sequence
of labels across sequences of text inputs. Unlike discrete classifiers, CRFs model the
probability of a transition between labels on “neighbouring” elements, meaning they take
into account past and future address field states into the labelling of addresses into address
fields. This mitigates a limitation of segmentation models such as hidden markov models
(HMMs) called the label bias problem: “transitions leaving a given state to compete only
against each other, rather than against all transitions in the model” (Lafferty et al. 2001).
Take, for example, the business address for “1st for Toys, 244 Ponce de Leon Ave. Atlanta
30308”. A naive segmentation model would incorrectly parse “1st” as a property number,
whereas it actually completes the business name “1st for Toys”, leading to an erroneous
sequence of label predictions. When a CRFs has parsed “1st” and reaches the second
token, “for”, the model scores an l × l matrix where l is the maximal number of labels
(or address fields) that can be assigned by the CRFs. In L, lij reflects the probability of
the current word being labelled as i and the previous word labelled j (Diesner, Carley
2008). In a CRFs model, when the parser reaches the actual property number, “244”,
high scoring in the matrix indicates the current label should be a property number, and
the previous label revised to a business name. For a more detailed account, see Comber,
Arribas-Bel (2019).

To segment each address, we apply the parse_address function row-wise for both
the Zagat and Fodors addresses. This generates a list of tuples (see below code block
for an example of the first two addresses from the Zagat dataset) that we convert into
dictionaries before finally reading these into a pandas dataframe.

[8]: [[('arnie mortons of chicago', 'house'),
('435', 'house_number'),
('s la cienega blvd', 'road'),
('los angeles', 'city'),
('90048', 'postcode')],

[('arts deli', 'house'),
('12224', 'house_number'),
('ventura blvd', 'road'),
('studio city', 'city'),
('91604', 'postcode')]]

[8]: [[('arnie mortons of chicago', 'house'),
('435', 'house_number'),
('s la cienega blvd', 'road'),
('los angeles', 'city'),
('90048', 'postcode')],

[('arts deli', 'house'),
('12224', 'house_number'),
('ventura blvd', 'road'),
('studio city', 'city'),
('91604', 'postcode')]]

REGION : Volume 6, Number 3, 2019

https://github.com/openvenues/pypostal#installation

22 S. Comber

[9]: # parse address string using libpostal CRF segmentation tool

addr_zagat_parse = [parse_address(addr, country='us') for addr in

... matched_address.addr_zagat]

addr_fodor_parse = [parse_address(addr, country='us') for addr in

... matched_address.addr_fodor]

convert to pandas dataframe

addr_zagat_parse = pd.DataFrame.from_records([{k: v for v, k in row} for row in

... addr_zagat_parse]).add_suffix('_zagat')
addr_fodor_parse = pd.DataFrame.from_records([{k: v for v, k in row} for row in

... addr_fodor_parse]).add_suffix('_fodor')

vertical join of CRF-parsed addresses between both dataframes

matched_address = matched_address.join(addr_zagat_parse).join(addr_fodor_parse)

Given we know the match status of our training data, we can safely join the records
back together once we have successfully segmented them. Moreover, as we know the
match status in advance, we can assign unique IDs that we will use later to create a
binary variable for indicating whether an address pair is matched or non-matched.

[10]: # create unique ID for matched addresses, these will be used later to create a match

status

uids = [str(uuid.uuid4()) for i in matched_address.iterrows()]

the following two lines will assign the same uid to both columns, thus facilitating

a match

addr_zagat_parse['uid'], addr_fodor_parse['uid'] = uids, uids

match_ids = pd.DataFrame({'zagat_id' : addr_fodor_parse['uid'], 'fodor_id' :

... addr_fodor_parse['uid']})

[11]: # join match ids to main dataframe

matched_address = matched_address.join(match_ids)

preview of our parsed dataframe with uids assigned

matched_address.head().style.set_table_styles(styles)

[11]: Output in Table 2

4 Creation of candidate address pairs using a ‘full index’

Once our addresses have met a particular standard of quality and are segmented into the
desired address fields, the next step requires us to create candidate pairs of addresses that
potentially resolve to the same address. In record linkage, this step is typically called
indexing or blocking, and is required to reduce the number of address pairs that are
compared. In doing so we remove pairs that are unlikely to resolve to true matches. To
demonstrate the utility of blocking and why it is so important to address matching, we
first create a full index which creates all possible combinations of address pairs. More
concretely, a full index generates the Cartesian product between both sets of addresses.
Conditional on the size of both dataframes, full blocking is highly computationally
inefficient, and in our case we create 112 × 112 = 12544 candidate links; this has a
complexity of O(n2). We demonstrate the full index method to motivate the desire for
practitioners to implement more sophisticated blocking techniques.

4.1 Full index

Below, we instantiate an Index class before specifying the desired full index method for
generating pairs of records. We then create the Cartesian join between the Zagat and
Fodor addresses which creates a MultiIndex that links every Zagat address with every
Fodor address.

REGION : Volume 6, Number 3, 2019

S. Comber 23

T
a
b

le
2
:

O
u

tp
u

t
p

ro
d

u
ce

d
b
y

co
d

e
1
1

N
r

a
d
d
r
za
g
a
t

a
d
d
r
fo
d
o
r

p
h
o
n
e
n
u
m
-

ca
te
g
o
ry

za
g
a
t

p
h
o
n
e
n
u
m
-

ca
te
g
o
ry

fo
d
o
r

ci
ty

za
g
a
t

ci
ty

d
is
t-

b
er

za
g
a
t

b
er

fo
d
o
r

ri
ct

za
g
a
t

0
a
rn
ie

m
o
rt
o
n
s

a
rn
ie

m
o
rt
o
n
s

3
1
0
-2
4
6
-1
5
0
1

st
ea
k
h
o
u
se
s

3
1
0
/
2
4
6
-1
5
0
1

a
m
er
ic
a
n

lo
s
a
n
g
el
es

n
a
n

o
f
ch
ic
a
g
o
4
3
5

o
f
ch
ic
a
g
o
4
3
5

s
la

ci
en

eg
a

s
la

ci
en

eg
a

b
lv
d
lo
s
a
n
g
e-

b
lv
d
lo
s
a
n
g
e-

le
s
9
0
0
4
8

le
s
9
0
0
4
8

1
a
rt
s
d
el
i
1
2
2
2
4

a
rt
s
d
el
ic
a
te
s-

8
1
8
-7
6
2
-1
2
2
1

d
el
is

8
1
8
/
7
6
2
-1
2
2
1

a
m
er
ic
a
n

st
u
d
io

ci
ty

n
a
n

v
en
tu
ra

b
lv
d

se
n
1
2
2
2
4
v
en

-
st
u
d
io

ci
ty

tu
ra

b
lv
d
st
u
-

9
1
6
0
4

d
io

ci
ty

9
1
6
0
4

2
b
el
a
ir

h
o
te
l

h
o
te
l
b
el
a
ir

3
1
0
-4
7
2
-1
2
1
1

ca
li
fo
rn
ia
n

3
1
0
/
4
7
2
-1
2
1
1

ca
li
fo
rn
ia
n

n
a
n

n
a
n

7
0
1
st
o
n
e
ca
n
-

7
0
1
st
o
n
e
ca
n
-

y
o
n
rd

b
el

a
ir

y
o
n
rd

b
el

a
ir

9
0
0
7
7

9
0
0
7
7

3
ca
fe

b
iz
o
u

ca
fe

b
iz
o
u

8
1
8
-7
8
8
-3
5
3
6

fr
en

ch
b
is
tr
o

8
1
8
/
7
8
8
-3
5
3
6

fr
en

ch
sh
er
m
a
n
o
a
k
s

n
a
n

1
4
0
1
6
v
en
tu
ra

1
4
0
1
6
v
en

tu
ra

b
lv
d
sh
er
m
a
n

b
lv
d
sh
er
m
a
n

o
a
k
s
9
1
4
2
3

o
a
k
s
9
1
4
2
3

4
ca
m
p
a
n
il
e
6
2
4

ca
m
p
a
n
il
e
6
2
4

2
1
3
-9
3
8
-1
4
4
7

ca
li
fo
rn
ia
n

2
1
3
/
9
3
8
-1
4
4
7

a
m
er
ic
a
n

lo
s
a
n
g
el
es

n
a
n

s
la

b
re
a
av
e

s
la

b
re
a
av
e

lo
s
a
n
g
el
es

lo
s
a
n
g
el
es

9
0
0
3
6

9
0
0
3
6

C
o
n
ti
n
u
ed

(a
d
d
it
io
n
a
l
co
lu
m
n
s)

o
n
n
ex
t
pa
ge

REGION : Volume 6, Number 3, 2019

24 S. Comber

T
a
b
le

2
–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa
ge

N
r

h
o
u
se

za
g
a
t

h
o
u
se

n
u
m
-

p
o
st
co
d
e
za
g
a
t

ro
a
d
za
g
a
t

su
b
u
rb

za
g
a
t

ci
ty

fo
d
o
r

ci
ty

d
is
t-

h
o
u
se

fo
d
o
r

b
er

za
g
a
t

ri
ct

fo
d
o
r

0
a
rn
ie

m
o
rt
o
n
s

4
3
5

9
0
0
4
8

s
la

ci
en

eg
a
b
lv
d

n
a
n

lo
s
a
n
g
el
es

n
a
n

a
rn
ie

m
o
rt
o
n
s

o
f
ch
ic
a
g
o

o
f
ch
ic
a
g
o

1
a
rt
s
d
el
i

1
2
2
2
4

9
1
6
0
4

v
en
tu
ra

b
lv
d

n
a
n

st
u
d
io

ci
ty

n
a
n

a
rt
s
d
el
ic
a
te
s-

se
n

2
b
el
a
ir

h
o
te
l

7
0
1

9
0
0
7
7

st
o
n
e
ca
n
y
o
n
rd

n
a
n

n
a
n

n
a
n

h
o
te
l
b
el
a
ir

b
el

a
ir

3
ca
fe

b
iz
o
u

1
4
0
1
6

9
1
4
2
3

v
en
tu
ra

b
lv
d

n
a
n

sh
er
m
a
n
o
a
k
s

n
a
n

ca
fe

b
iz
o
u

4
ca
m
p
a
n
il
e

6
2
4

9
0
0
3
6

s
la

b
re
a
av
e

n
a
n

lo
s
a
n
g
el
es

n
a
n

ca
m
p
a
n
il
e

N
r

h
o
u
se

n
u
m
-

p
o
st
co
d
e-

ro
a
d
fo
d
o
r

st
a
te

fo
d
o
r

su
b
u
rb

fo
d
o
r

b
er

fo
d
o
r

fo
d
o
r

0
4
3
5

9
0
0
4
8

s
la

ci
en

eg
a
b
lv
d

n
a
n

n
a
n

1
1
2
2
2
4

9
1
6
0
4

v
en
tu
ra

b
lv
d

n
a
n

n
a
n

2
7
0
1

9
0
0
7
7

st
o
n
e
ca
n
y
o
n
rd

n
a
n

n
a
n

b
el

a
ir

3
1
4
0
1
6

9
1
4
2
3

v
en
tu
ra

b
lv
d

n
a
n

n
a
n

4
6
2
4

9
0
0
3
6

s
la

b
re
a
av
e

n
a
n

n
a
n

N
r

za
g
a
t
id

fo
d
o
r
id

0
9
9
b
b
cd

0
3
-c
e4
5
-4
0
b
5
-9
0
7
f-
4
7
f5
a
e1
6
a
e2
9

9
9
b
b
cd

0
3
-c
e4
5
-4
0
b
5
-9
0
7
f-
4
7
f5
a
e1
6
a
e2
9

1
1
b
1
e1
ee
1
-c
8
8
0
-4
7
2
2
-a
b
a
a
-4
ec
4
4
c7
d
9
4
a
6

1
b
1
e1
ee
1
-c
8
8
0
-4
7
2
2
-a
b
a
a
-4
ec
4
4
c7
d
9
4
a
6

2
f2
5
4
8
f6
8
-2
3
2
6
-4
7
0
6
-b
d
c1
-d
b
fc
2
6
5
ec
b
f3

f2
5
4
8
f6
8
-2
3
2
6
-4
7
0
6
-b
d
c1
-d
b
fc
2
6
5
ec
b
f3

3
9
3
6
6
8
7
e2
-1
1
6
1
-4
ec
d
-9
8
c3
-b
5
a
c6
2
0
d
8
7
7
6

9
3
6
6
8
7
e2
-1
1
6
1
-4
ec
d
-9
8
c3
-b
5
a
c6
2
0
d
8
7
7
6

4
2
0
a
0
5
0
0
6
-d
0
8
e-
4
2
4
5
-b
0
1
4
-a
b
2
d
0
f5
5
2
6
6
2

2
0
a
0
5
0
0
6
-d
0
8
e-
4
2
4
5
-b
0
1
4
-a
b
2
d
0
f5
5
2
6
6
2

REGION : Volume 6, Number 3, 2019

S. Comber 25

[12]: indexer = rl.Index()

indexer.full()

create cartesian join between zagat and fodor restaurant addresses

candidate_links = indexer.index(matched_address.city_zagat, matched_address.city_fodor)

[12]: WARNING:recordlinkage:indexing - performance warning - A full index can result in large

number of record pairs.

[13]: # this creates a two-level multiindex, so we name addresses from the zagat and fodor

databases, respectively.

candidate_links.names = ['zagat', 'fodor']

print('{} candidate links created using full indexing.'.format(len(candidate_links)))

[13]: 12544 candidate links created using full indexing.

In practice, a full index creates a dataframe with 12,544 rows and thus creates candidate
address pairs between every possible combination of address from both the Zagat and
Fodor datasets. Once we generate this dataframe of potential matches, we create a match
status column and assign a 1 to actual matched addresses and 0 to non-matches based on
the unique IDs created earlier.

[14]: # lets create a function we can reuse later on

def return_candidate_links_with_match_status(candidate_links):

we return a vector of label values for both the zagat and fodor restaurant

IDs from the multiindex

zagat_ids = candidate_links.get_level_values('zagat')
fodor_ids = candidate_links.get_level_values('fodor')

now we create a new dataframe as long as the number of candidate links

zagat = matched_address.loc[zagat_ids][['city_zagat', 'house_zagat',\
'house_number_zagat', 'road_zagat',\
'suburb_zagat', 'zagat_id']]

fodor = matched_address.loc[fodor_ids][['city_fodor','house_fodor',\
'house_number_fodor', 'road_fodor',\
'suburb_fodor', 'fodor_id']]

vertically concateate addresses from both databases

candidate_link_df = pd.concat([zagat.reset_index(drop=True),

... fodor.reset_index(drop=True)], axis=1)

next we create a match status column that we will use to train a machine

learning model

candidate_link_df['match_status'] = np.nan

assign 1 for matched, 0 non-matched

candidate_link_df.loc[candidate_link_df['zagat_id'] ==

... candidate_link_df['fodor_id'], 'match_status'] = 1.

candidate_link_df.loc[~(candidate_link_df['zagat_id'] ==

... candidate_link_df['fodor_id']), 'match_status'] = 0.

return candidate_link_df

candidate_link_df = return_candidate_links_with_match_status(candidate_links)

4.2 Creation of comparison vectors from indexed addresses

To resolve addresses into matches and non-matches we generate comparison vectors
between each candidate address pair. Each element of this comparison vector is a
similarity metric used to assess the closeness of two address fields. In our case, we use
Jaro-Winkler similarity because it has been observed to perform best on attributes
containing named values (e.g., property names, street names, or city names) (Christen

REGION : Volume 6, Number 3, 2019

26 S. Comber

2012, Yancey 2005). The Jaro similarity of two given address components a1 and a2 is
given by

jaro sim =

{
0 if m = 0
1
3 (m
|a1| + m

|a2| + m−t
m) otherwise

where |ai| is the length of the address component string ai, m is the number of matching
characters, and t is the number of transpositions required to match the two address
components. We will create a function that makes use of the jellyfish implementation
of Jaro-winkler similarity. Several other string similarity metrics are available and are
optimised for particular use cases and data types. See Chapter 5 of Christen (2012) for
an excellent overview.

[15]: def jarowinkler_similarity(s1, s2):

conc = pd.concat([s1, s2], axis=1, ignore_index=True)

def jaro_winkler_apply(x):

try:

return jellyfish.jaro_winkler(x[0], x[1])

raise error if fields are empty

except Exception as err:

if pd.isnull(x[0]) or pd.isnull(x[1]):

return np.nan

else:

raise err

apply row-wise to concatenated columns

return conc.apply(jaro_winkler_apply, axis=1)

Before applying Jaro-Winkler similarity we need to choose columns that were seg-
mented in both the Zagat and Fodor datasets.

[16]: # lets take a look at the columns we have available

candidate_link_df.columns

[16]: Index(['city_zagat', 'house_zagat', 'house_number_zagat', 'road_zagat',
'suburb_zagat', 'zagat_id', 'city_fodor', 'house_fodor',
'house_number_fodor', 'road_fodor', 'suburb_fodor', 'fodor_id',
'match_status'],

dtype='object')

As we can only match columns that were parsed in both address datasets, this means
we lose two columns, city_district_zagat and state_fodor, that were parsed by the
CRF segmentation model. Once we observe which address fields are common to both
datasets, we create so-called comparison vectors from candidate address pairs of the Zagat
and Fodor datasets. Each element of the comparison vector represents the string similarity
between address fields contained in both databases. For example, city_jaro describes
the string similarity between the columns city_zagat and city_fodor. Looking at the
first two rows of our comparison vectors dataframe, a city_jaro value of 1.00 implies an
exact match whereas a value of 0.4040 implies a number of modifications are required to
match the two city names, and so these are less likely to correspond to a match.

[17]: # create a function for building comparison vectors we can reuse later

def return_comparison_vectors(candidate_link_df):

candidate_link_df['city_jaro'] = jarowinkler_similarity(candidate_link_df.

...city_zagat, candidate_link_df.city_fodor)

candidate_link_df['house_jaro'] = jarowinkler_similarity(candidate_link_df.

...house_zagat, candidate_link_df.house_fodor)

candidate_link_df['house_number_jaro'] = jarowinkler_similarity(candidate_link_df.

...house_number_zagat, candidate_link_df.house_number_fodor)

REGION : Volume 6, Number 3, 2019

S. Comber 27

Table 3: Output of code 17

city jaro house jaro house number jaro road jaro suburb jaro match status

0 1 1 1 1 0 1
1 0.40404 0.568301 0 0.629085 0 0
2 0 0.482143 0 0.674077 0 0
3 0.626263 0.502778 0.511111 0.629085 0 0
4 1 0.45463 0 0.831493 0 0

candidate_link_df['road_jaro'] = jarowinkler_similarity(candidate_link_df.

...road_zagat, candidate_link_df.road_fodor)

candidate_link_df['suburb_jaro'] = jarowinkler_similarity(candidate_link_df.

...suburb_zagat, candidate_link_df.suburb_fodor)

now we build a dataframe that contains the jaro-winkler similarity between the

address components and the matching status

comparison_vectors = candidate_link_df[['city_jaro', 'house_jaro',\
'house_number_jaro','road_jaro',\
'suburb_jaro', 'match_status']]

set NaN values to 0 so the comparison vectors can work with the applied classifiers

comparison_vectors = comparison_vectors.fillna(0.)

return comparison_vectors

comparison_vectors = return_comparison_vectors(candidate_link_df)

lets preview this dataframe to build some intution as to how it looks

comparison_vectors.head().style.set_table_styles(styles)

[17]: Output in Table 3

4.3 Classification and evaluation of match performance

Once we obtain comparison vectors for each candidate address pair, we frame our approach
as a binary classification problem by resolving the vectors into matches and non-matches.
As the Zagat and Fodors dataframe has labels that describe our address pairs as matched,
we use supervised classification to train a statistical model, a random forest, to classify
address pairs with an unknown match status into matches and non-matches. As a
reminder, a random forest is generated using a multitude of decision trees during training
which then outputs the mode of the match status decision for the individual trees.

In practice, we initialize a random forest object and split our comparison_vectors

dataframe into features containing our Jaro-Winkler string similarity features, X, and a
vector used to predict match status of the addresses, y.

[18]: # create a random forest classifier that uses 100 trees and number of cores equal to

those available on machine

rf = RandomForestClassifier(n_estimators = 100,

Due to small number of features (5) we do not limit

depth of trees

max_depth = None,

max number of features to evaluate split is

sqrt(n_features)

max_features = 'auto',
n_jobs = os.cpu_count())

define metrics we use to assess the model

scoring = ['precision', 'recall', 'f1']
folds = 10

extract the jaro-winkler string similarity and match label

X = comparison_vectors.iloc[:, 0:5]

y = comparison_vectors['match_status']

REGION : Volume 6, Number 3, 2019

28 S. Comber

To evaluate the performance of our built classification model, we use 10-fold cross-
validation meaning the performance measures are averaged across the test sets used
within the 10 folds. We use three metrics that are commonly used to evaluate machine
learning models. Recall measures the proportion of address pairs that should have been
classified, or recalled, as matched (Christen 2012). The precision (or, equivalently, the
positive predictive value) calculates the proportion of the matched address pairs that are
classified correctly as true matches (Christen 2012). Finally, the F1 score reflects the
harmonic mean between precision and recall. Our cross-validation exercise is executed in
the following cell.

[19]: # 10-fold cross-validation procedure

scores = cross_validate(estimator = rf,

X = X,

y = y,

cv = folds,

scoring = scoring,

return_train_score = False)

[20]: print('Mean precision score is {} over {} folds.'.format(np.round(np.

...mean(scores['test_precision']), 4), folds))

print('Mean recall score is {} over {} folds.'.format(np.round(np.

...mean(scores['test_recall']), 4), folds))

print('Mean F1 score is {} over {} folds.'.format(np.round(np.

...mean(scores['test_f1']), 4), folds))

[20]: Mean precision score is 0.9546 over 10 folds.

Mean recall score is 0.928 over 10 folds.

Mean F1 score is 0.9383 over 10 folds.

Overall, the high precision value implies that 95% of true positives are successfully
disambiguated from false positives. Moreover, our recall value implies that 93% of all
potential matches were successfully returned, with the remaining 7% of correct matches
incorrectly labelled as false negatives. Given the high values in both of these metrics, the
accompanying F1 score is equally high.

5 Creation of candidate address pairs by blocking on zipcode

While a Cartesian product could be useful in a linkage exercise where we have a very small
number of matched addresses, in production environments more sophisticated techniques
are generally required to create candidate address links. This is particularly the case when
we have a large number of addresses. Thus, blocking is typically introduced to partition
the set of all possible address comparisons to within mutually exclusive blocks. If we
let b equal the number of blocks, we reduce the complexity of the comparison exercise

to O(n2

b), which is far more computationally tractable than the full index method used
above.

When deciding which column to use as a blocking key we generally need pay attention
to two main considerations. Firstly, we pay attention to attribute data quality. Typically
when identifying a blocking key, we choose a key that has a low number of missing
values. This is because choosing a key with many missing values forces a large number of
addresses into a block where the key is an empty value, which may lead to many misclas-
sified address matches. And secondly we pay attention to the frequency distribution
of attribute values. We optimise towards a uniform distribution of values, as typically
skewed distributions that result in some values occurring very frequently mean that these
values will dominate the candidate pairs of address generated.

These considerations are addressed in the following two code blocks.

REGION : Volume 6, Number 3, 2019

S. Comber 29

Figure 1: Figure generated by code 22

[21]: print("Missing postcodes for Zagat addresses: {}. \n

Missing postcodes for Fodor addresses: {}.".format(matched_address.postcode_zagat.

...isnull().sum(), matched_address.postcode_fodor.isnull().sum()))

[21]: Missing postcodes for Zagat addresses: 1.

Missing postcodes for Fodor addresses: 0.

[22]: # check distribution of postcode blocks

pc_dist = matched_address.groupby('postcode_fodor').size().to_frame().
...rename(columns={0:'n_addresses'})

f, ax = plt.subplots(1, figsize=(10,6))

sns.kdeplot(pc_dist.n_addresses.values, color='g', shade=True, legend=False)

ax.set_xlabel('Number of addresses in postcode block ($\mu = {}$, $\sigma = {}$).'
.format(np.mean(pc_dist.n_addresses), np.round(np.std(pc_dist.n_addresses),

2)), size=15)

plt.show()

[22]: Output in Figure 1

The postcode attribute looks like a sensible choice of blocking key because it contains
just one missing value and there are very low numbers of candidate address compar-
isons within each block. As you can see in the output below, when we use a more
sophisticated indexing technique we generate a far lower number of candidate address
comparisons. In fact, we create only 1014 candidate address links despite adding synthetic
non-matches (discussed below). Overall, our introduction of blocking substantially lowers
the computational requirement of the linkage task.

5.1 Creation of synthetic non-matched addresses

To make this exercise more realistic, let’s also create 112 synthetic non-matches so we
have 224 addresses in total. This will also be important for training our machine learning
technique to learn the representations of non-matched addresses in addition to matches.
In this case we use the FEBRL data set generator script generate.py to create an
artificially generated dataset (see http://users.cecs.anu.edu.au/ Peter.Christen/Febrl/febrl-
0.3/febrldoc-0.3/node70.html). The script uses Python 2.7, so we read the output as
JSON so the user does not have to rely on an external input. We do this in keeping with

REGION : Volume 6, Number 3, 2019

http://users.cecs.anu.edu.au/~Peter.Christen/Febrl/febrl-0.3/febrldoc-0.3/node70.html
http://users.cecs.anu.edu.au/~Peter.Christen/Febrl/febrl-0.3/febrldoc-0.3/node70.html

30 S. Comber

a self-contained notebook but describe the steps required to reproduce the non-matches
below.

The synthetic non-matches are essentially random permutations of the matched
addresses. These are constructed on the basis of frequency tables for each address field
that count the occurrence of particular values. For example, the first row of a frequency
table for a house number would look like:

<house_number_attribute_value>,<frequency_of_occurence>.

[23]: # first we need columns from the zagat and fodor databases to create random addresses

zagat_cols = ['city_zagat', 'house_number_zagat',\
'house_zagat', 'suburb_zagat',\
'road_zagat', 'postcode_zagat']

fodor_cols = ['city_fodor', 'house_number_fodor',\
'house_fodor', 'suburb_fodor',\
'road_fodor','postcode_fodor']

create a directory for address component frequencies

if not os.path.exists('freqs'):
os.makedirs('freqs')

create distributions of address components for both datasets that will be used to

create fake addresses

for cols in [zagat_cols, fodor_cols]:

for col in cols:

freq = matched_address[col].value_counts().reset_index()

freq.to_csv('freqs/{}_freq.csv'.format(col), index=False, header=False)

The script generate.py takes six parameters that are used to create non-matched
addresses. The first argument demarcates the number of original records to be generated;
the second specifies the number of duplicate records from the original to be generated;
and the third, fourth and fifth arguments define the maximal number of duplicate records
that will be created based on one original record, the maximum number of modifications
introduced to the address field, and the maximum number of modifications introduced
to the address, respectively. The final parameter is used to enter which probability
distribution will be to create duplicate records – i.e. uniform, poisson, or zipf. In our case
we are only interested in building synthetic non-matches (and not duplicates), so we set
the number of original records to be built as 112, the number of duplicates generated as 0,
and leave the number of modifications introduced by the recommended default settings.

In addition, for each address field, users are asked to define a dictionary inside
generate.py that outlines the probability for particular modifications. This includes
setting the probability of modifications such as misspellings, insertions, deletions, substi-
tutions and transpositions of word and characters. An example dictionary for the house
number address field is given below where we set the file path to the word frequency CSV
generated above:

[24]: house_number_dict = {'name':'house_number',
'type':'freq',

'char_range':'digit',
'freq_file':'freqs/house_number_fodor_freq.csv',
'freq_file':'freqs/house_number_zagat_freq.csv',

'select_prob':0.20,
'ins_prob':0.10,
'del_prob':0.16,
'sub_prob':0.54,

'trans_prob':0.00,
'val_swap_prob':0.00,
'wrd_swap_prob':0.00,
'spc_ins_prob':0.00,
'spc_del_prob':0.00,

'miss_prob':0.00,
'new_val_prob':0.20}

REGION : Volume 6, Number 3, 2019

S. Comber 31

Damerau (1964) finds the proportions of typographical errors are typically spread as
substitutions (59%), deletions (16%), transpositions (2%), insertions (10%) and multiple
errors (13%). For this reason we broadly align our dictionary probabilities with these
findings. After defining sensible probabilities for modifications, we execute the following
scripts on a terminal which will create a file, zagat_synthetic_addresses.csv and
fodor_synthetic_addresses.csv consisting of synthetic addresses from the Zagat and
Fodor datasets, respectively.

For simplicity we generate our non-matches using all the data at once. However,
in a real-world application, we might wish to create non-matches within each zipcode
block one at a time. This would create more realistic synthetic non-matches. This is
because non-matched addresses would be constructed from the frequency tables of each
zipcode block, meaning each non-match would share more commonality to actual matched
addresses. In practice, this would improve the predictive power of our classification model
to disambiguate between candidate address pairs that have very subtle differences yet are
still matched or non-matched.

[25]: # ! python2 generate.py zagat_synthetic_addresses.csv 112 0 4 2 2 poisson

[25]:
Create 112 original and 0 duplicate records

Distribution of number of duplicates (maximal 4 duplicates):

[(1, 0.0), (2, 0.375), (3, 0.75), (4, 0.9375)]

Step 1: Load and process frequency tables and misspellings dictionaries

Step 2: Create original records

Step 2: Create duplicate records

Step 3: Write output file

End.

[26]: # ! python2 generate.py fodor_synthetic_addresses.csv 112 0 4 2 2 poisson

[26]:
Create 112 original and 0 duplicate records

Distribution of number of duplicates (maximal 4 duplicates):

[(1, 0.0), (2, 0.375), (3, 0.75), (4, 0.9375)]

Step 1: Load and process frequency tables and misspellings dictionaries

Step 2: Create original records

Step 2: Create duplicate records

Step 3: Write output file

End.

We then read these synthetic non-matches into a dataframe.

[27]: # read parsed synthetic addresses

synthetic_zagat_address = pd.read_csv('zagat_synthetic_addresses.csv').
...add_suffix('_zagat').drop(columns=['rec_id_zagat'])
synthetic_fodor_address = pd.read_csv('fodor_synthetic_addresses.csv').
...add_suffix('_fodor').drop(columns=['rec_id_fodor'])

REGION : Volume 6, Number 3, 2019

32 S. Comber

set uids for synthetic addresses

synthetic_zagat_address['zagat_id'] = [str(uuid.uuid4()) for i in

...synthetic_zagat_address.iterrows()]

synthetic_fodor_address['fodor_id'] = [str(uuid.uuid4()) for i in

...synthetic_fodor_address.iterrows()]

join synthetic zagat and fodor addresses vertically

synthetic_non_matches = synthetic_zagat_address.join(synthetic_fodor_address)

remove whitespace from column names and attributes

synthetic_non_matches = synthetic_non_matches.rename(columns = lambda x : x.strip())

synthetic_non_matches = synthetic_non_matches.applymap(lambda x : x.strip() if

...type(x) == str else x)

Now we have generated synthetic non-matches, we need to join these back to our
dataframe of matched addresses. As the above steps require external scripts we provide the
JSON required to reconstruct the synthetic dataframe in the dedicated Github repository.
This can be read by executing the cell below which uses the pd.read_json function.

[28]: ! wget https://raw.githubusercontent.com/SamComber/address_matching_workflow/master/

...synthetic_addresses.json

[28]: --2019-12-21 09:11:11-- https://raw.githubusercontent.com/SamComber/address_matching_

workflow/master/synthetic_addresses.json

Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 199.232.56.133

Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|199.232.56.133|:443

... connected.

HTTP request sent, awaiting response... 200 OK

Length: 29098 (28K) [text/plain]

Saving to: ‘synthetic_addresses.json’

synthetic_addresses 100%[===================>] 28.42K --.-KB/s in 0.02s

2019-12-21 09:11:11 (1.16 MB/s) - ‘synthetic_addresses.json’ saved [29098/29098]

[29]: f = 'synthetic_addresses.json'

synthetic_non_matches = pd.read_json(f)

In the cell below we join our matched addresses with our synthetic non-matches,
creating a dataframe of 224 address pairs.

[30]: # align columns of matched_address dataframe for horizontal join

matched_address = matched_address[['house_zagat', 'house_number_zagat', 'road_zagat',
... 'suburb_zagat', 'city_zagat', 'postcode_zagat','zagat_id', 'house_fodor',
... 'house_number_fodor', 'road_fodor', 'suburb_fodor', 'city_fodor', 'postcode_fodor',
... 'fodor_id']]

horizontal join between matched addresses and synthetic non-matches

matches_with_non_matches = pd.concat([matched_address, synthetic_non_matches],

... ignore_index=True)

print('{} address pairs created consisting of {} matches and {} synthetic non-matches.'.
...format(matches_with_non_matches.shape[0], matched_address.shape[0],

... synthetic_non_matches.shape[0]))

[30]: 224 address pairs created consisting of 112 matches and 112 synthetic non-matches.

REGION : Volume 6, Number 3, 2019

S. Comber 33

5.2 Blocking on postcode attribute

With our matches and synthetic non-matches assembled into a dataframe with 224 address
pairs, we can proceed to block on postcode values to create mutually exclusive address
partitions. Thus, for every unique postcode value, a dataframe (or block) will be created
in which candidate address pairs will be matched and non-matched based on attributes
of their comparison vectors.

The following code block creates a MultiIndex that links together the IDs of addresses
that are within the same zipcode block.

[31]: indexer = rl.Index()

block on postcode attribute

indexer.block(left_on='postcode_zagat', right_on='postcode_fodor')
candidate_links = indexer.index(matches_with_non_matches, matches_with_non_matches)

this creates a two-level multiindex, so we name addresses from the zagat and fodor

databases, respectively.

candidate_links.names = ['zagat', 'fodor']

print('{} candidate links created using the postcode attribute as a blocking key.'.
...format(len(candidate_links)))

[31]: 1014 candidate links created using the postcode attribute as a blocking key.

We follow the same work flow as before and create comparison vectors for every 1014
candidate address links.

[32]: candidate_link_df = return_candidate_links_with_match_status(candidate_links)

comparison_vectors = return_comparison_vectors(candidate_link_df)

Following this, we train our random forest on the comparison vectors and match status
labels. We use a 75/25 split for our train and test data.

[33]: X = comparison_vectors.iloc[:, 0:5]

y = comparison_vectors.match_status

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)

create a random forest classifier that uses 100 trees and number of cores equal to

those available on machine

rf = RandomForestClassifier(n_estimators = 100,

Due to small number of features (5) we do not limit

depth of trees

max_depth = None,

max number of features to evaluate split is

sqrt(n_features)

max_features = 'auto',
n_jobs = os.cpu_count())

predict match status of unseen address pairs

y_pred = rf.fit(X_train, y_train).predict(X_test)

5.3 Classification and evaluation of match performance

Having fit our random forest on the training data we can now assess the model under
the number of metrics we introduced earlier. We can also produce a confusion matrix
which shows true negatives in the top-left quadrant, false positives in the top-right, false
negatives in the bottom-left and true positives in the bottom-right. At first glance, the

REGION : Volume 6, Number 3, 2019

34 S. Comber

Figure 2: Figure generated by code 34

findings from the evaluation metrics below may seem counter-intuitive, especially as the
results of the classification exercise using the full index performed better. However, it
is pertinent to remind ourselves that we trained our classification model on matched
address only, which reflected an idealised but unrealistic scenario. In the results below
we introduced synthetic non-matches which reflected a scenario that a user is more likely
to encounter in a real-world address matching exercise.

In the following code block we generate evaluation metrics and a confusion matrix for
evaluating match performance.

[34]: print('Precision score: {}.'.format(np.round(precision_score(y_test, y_pred), 4)))

print('Recall score: {}.'.format(np.round(recall_score(y_test, y_pred), 4)))

print('F1 score: {}.'.format(np.round(f1_score(y_test, y_pred), 4)))

f,ax = plt.subplots(1, figsize=(10,6))

f.set_tight_layout(False)

fontsize=12

sns.heatmap(confusion_matrix(y_test, y_pred),

ax=ax,

annot=True,

annot_kws={'fontsize': 16},

cmap='Greens',
fmt='g')

ax.set_yticklabels(['Match', 'Non-match'], fontsize=fontsize)

ax.set_xticklabels(['Non-match', 'Match'], fontsize=fontsize);

ax.set_ylabel('True label', fontsize=fontsize)

ax.set_xlabel('Predicted label', fontsize=fontsize)

ax.xaxis.labelpad = 18

ax.yaxis.labelpad = 18

plt.show();

[34]: Precision score: 0.8519.

Recall score: 0.8846.

F1 score: 0.8679.

Output in Figure 2

Overall, our precision value implied 85% of true positives were correctly separated
from false positives, and our recall value indicated that 88% of all true address matches
were successfully retrieved, with the remaining 12% incorrectly classified as non-matches.

REGION : Volume 6, Number 3, 2019

S. Comber 35

Figure 3: Output generated by code 35

With our model now fitted and tested, we could extend its use to predict the match status
of unseen address pairs. As an example application, if we had a small sample of matched
addresses that belonged to a larger set of unmatched addresses, we could use our trained
predictive model to match the remaining addresses in the dataset. This would work so
long as the textual representations of addresses used in the prediction stage follow a
similar structure to those addresses used to train the classification model.

Before we conclude, a benefit of using ensemble methods such as random forest
classifiers is that we can return an indication of how useful and valuable each feature
was in the construction of each decision tree. In a practical application, extracting a
measure of feature importance might be a useful step in pruning redundant features from
the comparison vectors. This might be a useful step in lowering computation times as we
decrease the number of address field comparisons required to evaluate candidate address
pairs.

Thus, in the following code block we rank feature importance of particular address
fields to the match classification.

[35]: # extract feature importances from random forest classifier

feature_importance_to_match = rf.feature_importances_

calculate standard deviation of feature importances across trees

std = np.std([tree.feature_importances_ for tree in rf.estimators_], axis=0)

indices = np.argsort(feature_importance_to_match)[::-1]

plot importances alongside feature labels

plt.figure(figsize=(10,6))

plt.title("Feature importances of address attributes to match", size=15)

plt.bar(range(X_train.shape[1]), feature_importance_to_match[indices],

color="#3CB371", yerr=std[indices], align="center")

feature_labs = X_train.columns[np.argsort(feature_importance_to_match)[::-1]].values

plt.xticks(range(X_train.shape[1]), feature_labs, size=12)

plt.xlim([-1, X_train.shape[1]])

plt.show()

[35]: Output in Figure 3

In our case, and as one might expect, the restaurant’s house number, house_number_jaro
is the most important feature used for resolving candidate pairs of addresses into a match
while the suburb, suburb_jaro, is the least important feature and so could possibly be
removed as an address field from the comparison step.

REGION : Volume 6, Number 3, 2019

36 S. Comber

6 Conclusion

Address matching is a data enrichment process that is increasingly required in wide-
ranging, real-world applications. For example, matching between census, commercial
or lifestyle records has the potential benefit of improving data quality, enabling spatial
data visualisation and joining data that would otherwise remain isolated in data silos.
In absence of unique identifiers for directly linking data, practitioners have typically
relied on statistical linkage methods for matching addresses. Linking address datasets
in this way has the potential to unlock attributes that one would be unable to access
in circumstances where no primary keys exist to join the two datasets. Thus, in this
notebook, we documented the steps required to execute the work flow for an address
matching exercise that utilised new and recent innovations in machine learning. While
the dataset we used was low volume, the intention of the notebook was to demonstrate an
approach that is reproducible within a self-contained environment, and which might be
adapted by the interested user to larger data challenges. Training a predictive model to
link restaurant addresses may seem a trivial problem to solve, but these addresses could
easily be replaced by more meaningful address records in areas such as public health and
socio-economic mobility studies. Therefore, the core contribution of this notebook sought
to equip the regional scientist with skills necessary to extend the address matching work
flow to their own (and far more interesting) use cases.

REGION : Volume 6, Number 3, 2019

S. Comber 37

References

Baldovin T, Zangrando D, Casale P, Ferrarese F, Bertoncello C, Buja A, Marcolongo A,
Baldo V (2015) Geocoding health data with geographic information systems: A pilot
study in northeast Italy for developing a standardized data-acquiring format. Journal
of Preventive Medicine & Hygiene 56: 88–94

Cayo R, Talbot TO (2003) Positional error in automated geocoding of residential addresses.
International Journal of Health Geographics 2: 1–10

Christen P (2012) Data matching: Concepts and techniques for record linkage, entity
resolution, and duplicate detection. Springer, New York, NY

Comber S, Arribas-Bel D (2019) Machine learning innovations in address matching: A
practical comparison of word2vec and CRFs. Transactions in GIS 23: 334–348

Damerau F (1964) A technique for computer detection and correction of spelling errors.
Commununications of the ACM 7: 171–176. CrossRef.

Diesner J, Carley M (2008) Conditional random fields for entity extraction and ontological
text coding. Computational and Mathematical Organization Theory 14: 248–262

Lafferty J, McCallum A, Pereira F (2001) Conditional random fields: Probabilistic
models for segmenting and labelling sequence data. In: Brodley CE, Danyluk AP
(eds), Proceedings of the 18th International Conference on Machine Learning. Morgan
Kaufmann, San Francisco, CA, 282–289

Reynolds P, Behren JV, Gunier R, Goldberg D, Hertz A, Smith D (2003) Childhood
cancer incidence rates and hazardous air pollutants in California: An exploratory
analysis. Environmental Health Perspectives 111: 663–668

Ruggles S, Fitch C, Roberts E (2018) Historical census record linkage. Annual Review of
Sociology 44[1]: 19–37

Yancey W (2005) Evaluating string comparator performance for record linkage. Research
report series, statistics #2005-05, Bureau of the Census, Washington, DC

© 2019 by the authors. Licensee: REGION – The Journal of ERSA, European
Regional Science Association, Louvain-la-Neuve, Belgium. This article is distri-

buted under the terms and conditions of the Creative Commons Attribution, Non-Commercial
(CC BY NC) license (http://creativecommons.org/licenses/by-nc/4.0/).

REGION : Volume 6, Number 3, 2019

https://doi.org/10.1145/363958.363994
http://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Packages and dependencies
	Data loading, cleaning and segmentation
	Segmentation of address string into field columns

	Creation of candidate address pairs using a `full index'
	Full index
	Creation of comparison vectors from indexed addresses
	Classification and evaluation of match performance

	Creation of candidate address pairs by blocking on zipcode
	Creation of synthetic non-matched addresses
	Blocking on postcode attribute
	Classification and evaluation of match performance

	Conclusion

