
Volume 3, Number 2, 2016, R11–R23 journal homepage: region.ersa.org
DOI: 10.18335/region.v3i2.175

A primer for working with the Spatial Interaction mod-
eling (SpInt) module in the python spatial analysis li-
brary (PySAL)

Taylor Oshan1

1 Arizona State University, Tempe, AZ, USA (email: toshan@asu.edu)

Received: 6 November 2016/Accepted: 7 November 2016

Abstract. Although spatial interaction modeling is a fundamental technique to many
geographic disciplines, relatively little software exists for spatial interaction modeling and
for the analysis of flow data. This applies particularly to the realm of free and open source
software. As a result, this primer introduces the recently developed spatial interaction
modeling (SpInt) module of the python spatial analysis library (PySAL). The underlying
conceptual framework of the module is first highlighted, followed by an overview of the
main functionality, which will be illustrated using migration data. Finally, some future
additions are discussed.

1 Introduction

Spatial interaction modeling involves the analysis of flows from an origin to a destination,
either over physical space (i.e., migration) or through abstract space (i.e., telecommuni-
cation). Despite being a fundamental technique to many geographic disciplines, there
is relatively little software available to carry out spatial interaction modeling and the
analysis of flow data, especially in the realm of free and open source software. Therefore,
the purpose of this primer is to provide an overview of the recently developed spatial
interaction modeling (SpInt) module1 of the python spatial analysis library (PySAL)2.
First, the current framework of the module will be highlighted. Next, the main functional-
ity of the module will be illustrated using migration flows with a dataset previously used
for spatial interaction modeling tutorials in the R programming environment (Dennett
2012). Finally, some future additions are discussed.

2 The SpInt framework

2.1 Modeling framework

The core purpose of the SpInt module is to provide the functionality to calibrate spatial
interaction models. Since the “family” of spatial interaction models put forth by Wilson
(1971) are perhaps the most popular, they were chosen as the starting point of the module.
Consider the basic gravity model (Fotheringham, O’Kelly 1989),

1This primer is based on the 1.13 release of PySAL. For up-to-date code examples and namespaces, it
is recommended to consult the documentation pertaining to the latest version of PySAL

2http://pysal.github.io/

R11

R12 T. Oshan

Tij = k
V µi W

α
j

dβij
(1)

where

• Tij is an n×m matrix of flows between n origins (subscripted by i) to m destinations
(subscripted by j)

• V is an n× p and vector of p origin attributes describing the emissiveness of i

• W is an m× p vector of p destination attributes describing the attractiveness of j

• d is an n ×m matrix of the costs to overcome the physical separation between i
and j (usually distance or time)

• k is a scaling factor to be estimated to ensure the total observed and predicted flows
are consistent

• µ is a p× 1 vector of parameters representing the effect of p origin attributes on
flows

• α is a p× 1 vector of parameters representing the effect of p destination attributes
on flows

• β is a parameter representing the effect of movement costs on flows.

When data for T , V , W , and d are available we can estimate the model parameters (also
called calibration), which summarize the effect that each model component contributes
towards explaining the system of known flows (T). In contrast, known parameters can be
used to predict unknown flows when there are deviations in model components (V , W ,
and d) or the set of locations in the system are altered.

Using an entropy-maximizing framework, Wilson derives a more informative and
flexible “family” of four spatial interaction models (Wilson 1971). This framework seeks
to assign flows between a set of origins and destinations by finding the most probable
configuration of flows out of all possible configurations, without making any additional
assumptions. By using a common optimization problem and including information about
the total inflows and outflows at each location (also called constraints), the following
“family” of models can be obtained,

Unconstrained:

Tij = V µi W
α
j f(dij) (2)

Production-constrained:

Tij = AiOiW
α
j f(dij) (3)

Ai = 1 /
∑
j

Wα
j f(dij) (4)

Attraction-constrained:

Tij = BjDjV
µ
i f(dij) (5)

Bj = 1 /
∑
i

V µi f(dij) (6)

Doubly-constrained:

Tij = AiBjOiDjf(dij) (7)

Ai = 1 /
∑
j

BjDjf(dij) (8)

Bj = 1 /
∑
i

AiOif(dij) (9)

REGION : Volume 3, Number 2, 2016

T. Oshan R13

where

• Oi is an n× 1 vector of the total number of flows emanating from origin i

• Dj is an m× 1 vector of the total number of flows terminating at destination j

• Ai is an n× 1 vector of the origin balancing factors that ensures the total out-flows
are preserved in the predicted flows

• Bj is an m × 1 vector of the destination balancing factors that ensures the total
in-flows are preserved in the predicted flows

• f(dij) is a function of cost or distance, referred to as the distance-decay function.
Most commonly, this is an exponential or power function given by,

Power:

f(dij) = dβij (10)

Exponential:

f(dij) = exp(βdij) (11)

where β is expected to take a negative value. Different distance-decay functions assume
different responses to the increasing costs associated with moving to more distant locations.
Of note is that the unconstrained model with a power function distance-decay is equivalent
to the basic gravity model in equation (2), except that the scaling factor, k, is not included.
In fact, there is no scaling factor in any of the members of the family of maximum entropy
models because there is a total trip constraint implied in their derivation and subsequently
their calibration (Fotheringham, O’Kelly 1989). Another aside is that in the doubly-
constrained maximum entropy model, the values for Ai and Bj are dependent upon each
other and may need to be computed iteratively depending on calibration technique. It is
also usually assumed that all locations are both origins and destinations (i.e., n = m) for
doubly-constrained models.

Each member of the family of models provides a different system structure, which
can be chosen depending on the available data or the specific research question at hand.
The so-called unconstrained model does not conserve the total inflows or outflows during
parameter estimation. The production-constrained and attraction-constrained models
conserve either the number of total inflows or outflows, respectively, and are therefore
useful for building models that allocate flows either to a set of origins or to a set of
destinations. Finally, the doubly-constrained model conserves both the inflows and
the outflows at each location during model calibration. The quantity of explanatory
information provided by each model is given by the number of parameters it provides. As
such, the unconstrained model provides the most information, followed by the two singly-
constrained models, with the doubly-constrained model providing the least information.
Conversely, the model’s predictive power increases with higher quantities of built-in
information (i.e. total in or out-flows) so that the doubly-constrained model usually
provides the most accurate predictions, followed by the two singly-constrained models,
and the unconstrained model supplying the weakest predictions (Fotheringham, O’Kelly
1989).

2.2 Calibration framework3

Spatial interaction models are often calibrated via linear programming, nonlinear opti-
mization, or, increasingly more often, through linear regression. Given the flexibility and
extendability of a regression framework it was chosen as the primary model calibration
technique within the SpInt module. By taking the natural logarithm of both sides of a
spatial interaction model, say the basic gravity model, it is possible to obtain the so-called

3This section has been slightly revised by the author on August 24, 2017 to remove potential ambiguities

REGION : Volume 3, Number 2, 2016

R14 T. Oshan

log-linear spatial interaction model (equations 12 and 14), which can then be expressed
as a log-normal regression specification (equations 13 and 15),

Power-function:

lnTij = k + µ lnVi + α lnWj − β ln dij (12)

lnTij = k + µ lnVi + α lnWj + β ln dij + ε (13)

Exponential-function:

lnTij = k + µ lnVi + α lnWj − βdij (14)

lnTij = k + µ lnVi + α lnWj + βdij + ε (15)

where ε is a normally distributed error term with a mean of 0 and β in equations (13)
and (15) is expected to take on a negative value to reflect the underlying hypothesis that
spatial interactions decrease with higher costs or distances. The only difference between
equations (12) and (14) is the functional distance-decay specification, which results from
plugging either equation (10) for a power function or (11) for an exponential function into
equation (2) before linearizing it. The only practical difference here is that the distance is
logged in equation (12) whereas in equation (14) it is not. Constrained spatial interaction
models can be achieved by including fixed effects for the origins (production-constrained),
fixed effects for the destinations (attraction-constrained) or both (doubly-constrained).
However, there are several limitations of the log-normal gravity model, which include,

1. flows are often counts of people or objects and should be modeled as discrete entities;

2. flows are often not normally distributed;

3. downward biased flow predictions due to producing estimates for the logarithm of
flows instead of actual flows;

4. zero flows are problematic since the logarithm of zero is undefined.

Therefore, the Poisson log-linear regression specification for the family of spatial
interaction models was proposed (Flowerdew, Aitkin 1982, Flowerdew, Lovett 1988). This
specification assumes that the number of flows between i and j is drawn from a Poisson
distribution with mean, λij = Tij , where λij is assumed to be logarithmically linked to
the linear combination of variables,

lnλij = k + µ lnVi + α lnWj − β ln dij (16)

and exponentiating both sides of the equation yields the unconstrained Poisson log-linear
gravity model,

Tij = exp(k + µ lnVi + α lnWj − β ln dij) (17)

where equations (16) and (17) refer to the unconstrained model with a power function
distance-decay. As previously mentioned, using fixed effects for the balancing factors in
equations (4), (6), (8) and (9), the constrained variants of the family of spatial interaction
models can be specified as,

Production-constrained:

Tij = exp(k + µi + α lnWj − β ln dij) (18)

Attraction-constrained:

Tij = exp(k + µ lnVi + αj − β ln dij) (19)

Doubly-constrained:

Tij = exp(k + µi + αj − β ln dij) (20)

REGION : Volume 3, Number 2, 2016

T. Oshan R15

where µi are origin fixed effects and αi are destination fixed effects that achieve the
same results as including balancing factors (Tiefelsdorf, Boots 1995). Notice that k
is the estimated intercept and must be included in these log-linear models (equation
12–20) to ensure the total number of flows is conserved, despite not being included in the
maximum entropy models where such conservation is implied. Similar to equation (14), the
exponential function distance-decay can be specified in equation (17, 18–20) by omitting
the logarithm associated with dij . Using Poisson regression is more representative of flows
and satisfies limitations (1) and (2) and it also alleviates limitations (3) and (5) since we
no longer need to take the logarithm of Tij . Using fixed effects within Poisson regression
to calibrate the doubly-constrained model also avoids the need for iterative computation
of the balancing factors that exists in other calibration methods (Fotheringham, O’Kelly
1989).

Calibration of Poisson regression can be carried out within a generalized linear modeling
framework (GLM) using iteratively weighted least squares (IWSL), which converges to
the maximum likelihood estimates for the parameter estimates (Nelder, Wedderburn
1972). To maintain computational efficiency with increasingly larger spatial interaction
datasets, SpInt is built upon a custom GLM/IWLS routine that leverages sparse data
structures for the production-constrained, attraction-constrained, and doubly-constrained
models. As the number of locations in these models increases, so the does the number of
binary indicator variables needed to construct the fixed effects that enforce the constraints.
Therefore, larger spatial interaction datasets become increasingly sparse and the utilization
of sparse data structures takes advantage of this feature. As a metric, constrained models
with n = m = 3, 000 locations, which implies nm = n2 = 9, 000, 000 observed flows when
each location is an origin and destination, can be calibrated within minutes on a standard
macbook pro notebook.

2.3 Model fit statistics

In order to evaluate the fit of spatial interaction models, it has been recommended that a
variety of statistics be used (Knudsen, Fotheringham 1986), which is the approach taken
in SpInt. For the log-normal regression specification, it is popular to utilize the coefficient
of determination (R2), though this statistic is not available within the GLM framework
used by SpInt. In replacement of the R2 statistic, the SpInt framework provides a pseudo
R2 based on the likelihood function (McFadden 1974),

R2
pseudo = 1 −

ln L̂(Mfull)

ln L̂(MIntercept)
(21)

where L̂ is the likelihood of an estimated model, Mfull is the model including all explanatory
variables of interest, and MIntercept is the model with only an intercept (i.e., no covariates).
Like the R2 statistic, the pseudo version is at a maximum at a value of 1 with higher
values denoting better model fit. To account for model complexity, there is also an
adjusted version of this statistic,

R2
adj-pseudo = 1 −

ln L̂(Mfull) −K

ln L̂(MIntercept)
(22)

where K is the number of regressors. If model fit does not sufficiently improve, then it is
possible for this measure to decrease as variables are added, signaling that the additional
variables do not contribute towards a better model fit. Henceforth, these pseudo R2

statistics are referred to solely as R2 and adjusted R2. Another model fit statistic available
in the SpInt module that also accounts for model complexity is the Akaike information
criterion (AIC),

AIC = −2 ln L̂(Mfull) + 2K (23)

where lower AIC values indicate a better model fit (Akaike 1974). This statistic is grounded
in information theory, whereby the AIC is an asymptotic estimate of the information that
is lost by using the full model to represent a given theoretical process.

REGION : Volume 3, Number 2, 2016

R16 T. Oshan

The R2 and AIC are designed for model selection, which means they should not be
used to compare between different spatial systems. One solution to this issue is the
standardized root mean square error (SRMSE),

SRMSE =

√∑
i

∑
j(Tij−T̂ij)2

nm∑
i

∑
j Tij

nm

(24)

where the numerator is the root mean square error of the observed flows, Tij , and the

flows predicted by the model, T̂ij , and the denominator is the mean of the observed
flows and is responsible for standardization of the statistic. Here, nm is the number
of origin-destination pairs that constitute the system of flows. A SRMSE value of 0
indicates perfect model fit, while higher values indicate decreasing model fit; however,
the upper limit of the statistic is not necessarily 1 and will depend on the distribution of
the observed values (Knudsen, Fotheringham 1986).

One final fit statistic, a modified Sorensen similarity index (SSI), is included within
the SpInt module because it has become increasingly popular in some spatial interaction
literature that deals with non-parametric models (Lenormand et al. 2012, Masucci et al.
2012, Yan et al. 2013). Using the same symbol definition from the SRMSE, the SSI is
defined as,

SSI =
1

(nm)

∑
i

∑
j

2 min(Tij , T̂ij)

Tij + T̂ij
(25)

which is bounded between values of 0 and 1 with values closer to 1 indicating a better
model fit.

3 An illustrative example: migration in Austria

3.1 The data

Despite being a small toy dataset, the following example is utilized for consistency since
it was previously used to demonstrate spatial interaction modeling in the R programming
language (Dennett 2012). The data are migration flows between Austrian NUTS level
2 regions in 2006. In order to use a regression-based calibration, the data has to be
transformed from the matrices and vectors described in equations (1)–(9) to a table where
each row represents a single origin-destination dyad, (i, j) and any variables associated
with locations i and j. Details on how to do this are outlined further in LeSage, Pace
(2008), though this has already been done in the example data. Let’s have a look!

In [19]: import pandas as pd

import geopandas as gp

%pylab inline

austria_shp = gp.read_file('austria.shp')
austria_shp.plot()

austria = pd.read_csv('austria.csv')
austria.head()

Populating the interactive namespace from numpy and matplotlib

Out[19]: Unnamed: 0 Origin Destination Data Oi Dj Dij

0 0 AT11 AT11 0 4016 5146 1.000000e-300

1 1 AT11 AT12 1131 4016 25741 1.030018e+02

2 2 AT11 AT13 1887 4016 26980 8.420467e+01

3 3 AT11 AT21 69 4016 4117 2.208119e+02

4 4 AT11 AT22 738 4016 8634 1.320075e+02

REGION : Volume 3, Number 2, 2016

T. Oshan R17

The Origin and Destination columns refer to the labels for origin locations, i, and
the labels for destination locations, j, the Data column is the number of flows between i
and j, the Oi and Dj columns are the number of total out-flows at i and total in-flows at
j, respectively, and the Dij column is the Euclidian distance between the centroids of i
and j. In this case we use the total out-flow and total in-flow as variables to describe how
emissive an origin is and how attractive a destination is. If we want a more informative
and interesting model we can replace these with application specific variables that pertain
to different hypotheses. Next, lets format the data into arrays.

In [4]: austria = austria[austria['Origin'] != austria['Destination']]
flows = austria['Data'].values
Oi = austria['Oi'].values
Dj = austria['Dj'].values
Dij = austria['Dij'].values
Origin = austria['Origin'].values
Destination = austria['Destination'].values

The Oi and Dj vectors need not be n2 × 1 arrays. In fact, they can be n2 × k where
k is the number of variables that are being used to describe either origin or destination
attributes associated with flows. It should also be noted that intra-zonal flows have been
excluded (the first line of code above). This is sometimes done because intra-zonal flows
are large compared to inter-zonal flows and would therefore heavily influence the model
or because it is not possible to adequately define a distance associated with intra-zonal
flows. Some solutions to these issues have been proposed (Kordi et al. 2012, Tsutsumi,
Tamesue 2011), though for simplicity, intra-zonal were removed for this example.

3.2 Calibrating the models

Now, lets load the main SpInt functionality and calibrate some models. The “family” of
spatial interaction models are found within the gravity namespace of the SpInt module
and the estimated parameters can be accessed via the params attribute of a successfully
instantiated spatial interaction model.

In [5]: from pysal.contrib.spint.gravity import Gravity

from pysal.contrib.spint.gravity import Production

from pysal.contrib.spint.gravity import Attraction

from pysal.contrib.spint.gravity import Doubly

Unconstrained (basic gravity) model

In [6]: gravity = Gravity(flows, Oi, Dj, Dij, 'exp')
print gravity.params

[-8.01822841e+00 8.69316127e-01 8.91445153e-01 -6.22938370e-03]

Production-constrained model

REGION : Volume 3, Number 2, 2016

R18 T. Oshan

In [7]: production = Production(flows, Origin, Dj, Dij, 'exp')
print production.params[-2:]

[0.90285448 -0.0072617]

Attraction-constrained model

In [8]: attraction = Attraction(flows, Destination, Oi, Dij, 'exp')
print attraction.params[-2:]

[0.90037216 -0.00695034]

Doubly-constrained model

In [9]: doubly = Doubly(flows, Origin, Destination, Dij, 'exp')
print doubly.params[-1:]

[-0.00791533]

Note that for the above examples the print statement for the constrained models
params attribute is limited to print only the main model variables (i.e., not fixed effects),
though it is still possible to access the fixed effect parameters too.

In [10]: print production.params

[-1.16851884 1.68980685 2.15135947 0.59917703 0.88336198 1.20669895

0.68945769 1.15434225 1.01013674 0.90285448 -0.0072617]

The first parameter is always the overall intercept with the subsequent 8 parameters
representing the fixed effects in this case. You might ask, “why not 9 fixed effects for
the 9 different regions?”. Due to the coding scheme used in SpInt, and many popular
statistical programming languages, you would use n − 1 binary indicator variables in
the design matrix to include the fixed effects for all 9 regions in the model. While the
non-zero entries in these columns of the design matrix indicate which rows are associated
with which region, where a row has all zero entries then implicitly refers to the nth region
that has been left out. In SpInt, this is always the first origin or destination for the
production-constrained and attraction-constrained models. For the doubly-constrained
model, both the first origin and the first destination are left out (Tiefelsdorf, Boots 1995).
In terms of interpreting the parameters, these dropped locations are assumed to be 0.

You can also access typical model diagnostics, such as standard errors (std err),
t-values (tvalues), p-values (pvalues), and confidence intervals (cont int).

3.3 Interpreting the parameters

First, it will be demonstrated how to interpret the coefficients associated with the main
model variables from a general Poisson regression. However, because the spatial interaction
model is a log-linear Poisson regression (i.e., we take the log of the explanatory variables)
the same interpretation often cannot be applied because we are working in logarithmic
space. Therefore, it will also be demonstrated how to interpret the parameters when they
are associated with a logged explanatory variable.

Recall from the previous section that the exponential distance-decay specification
results in a model that does not take the logarithm of dij . Therefore, we can use
an unconstrained gravity model with an exponential distance-decay specification to
demonstrate a typical interpretation of coefficients from a Poisson regression.

In [11]: gravity = Gravity(flows, Oi, Dj, Dij, 'exp')
print gravity.params

[-8.01822841e+00 8.69316127e-01 8.91445153e-01 -6.22938370e-03]

REGION : Volume 3, Number 2, 2016

T. Oshan R19

-6.22938370e-03 is the coefficient for the distance variable in the above example. In
Poisson regression, the coefficients are typically interpreted as the proportionate change
in the predicted response, here Tij , if we increase an explanatory variable by 1 unit
(Cameron, Trivedi 2013). Technically, this is expressed as,

T̃ij = Tij ∗ exp(β) (26)

where T̃ij is the new value of Tij and β is a coefficient, here the one typically associated
with distance in a Poisson log-linear spatial interaction model with an exponential function
distance-decay. For this example, this means from a 1 unit increase in distance, holding
all other factors constant, if our model predicted 2,500 flows, then we can expect the
number of flows to decrease to approximately 2,484.475. We can also identify the percent
change expected from a one unit increase in distance using,

∆% = (1 − exp(β)) ∗ 100.0 (27)

which serves as an alternative interpretation of β. In this case, we could say that from a
1 unit increase in distance we could expect the number of predicted flows to decrease by
approximately 0.621%.

However, neither equation (26) nor (27) is applicable when the coefficient is associated
with a logged explanatory variable. This is important for Poisson log-linear spatial
interaction models because this applies to the origin and destination variables when using
an exponential function of distance-decay and to the origin, destination, and distance
variables when using a power function of distance-decay. In these cases, the interpretation
of the coefficients becomes the percent change in the predicted response, here Tij , if
we increase the associated explanatory variable by 1% (Cameron, Trivedi 2013). For
example, 8.91445153e-01 is the coefficient associated with destination total in-flows (i.e.,
attractiveness) in the above example. Then if we increase the in-flows to location j by
1%, say from 25, 000 to 25, 250, and holding all other factors constant, we can expect the
number of flows from i to j (i.e., Tij) to increase from 2, 000 to 2, 0204.

Finally, the fixed effects in the constrained models can be interpreted such that the
mean predicted flows, Tij , are eµi (eαj) times larger if they originate (terminate) from
location i (location j) (Cameron, Trivedi 2013), where eµi is equivalent notation for
exp(µi).

3.4 Assessing model fit

We can compare the different model fit statistics across the four types of spatial interaction
models for this example. Let’s process the statistics into a tidy table and have a look.

In [12]: R2, adjR2, SSI, SRMSE, AIC = [], [], [], [], []

model_name = ['grav', 'prod', 'att', 'doub']
col_names = ['R2', 'adjR2', 'AIC', 'SRMSE', 'SSI']
models = [gravity, production, attraction, doubly]

for model in models:

R2.append(model.pseudoR2)

adjR2.append(model.adj_pseudoR2)

SSI.append(model.SSI)

SRMSE.append(model.SRMSE)

AIC.append(model.AIC)

cols = {'model_name': model_name,

'R2': R2,

4This example is only illustrative. Of course, if we increased the total in-flows, this would imply
that we are also increasing the total out-flows from somewhere else and therefore the system could not
truly be held constant. However, substantive modeling calls for origin and destination variables that
are not derived from the interaction matrix. Therefore, this is not an issue in practice when there is
the assumption of independence between flows. It should also be noted that it has been hypothesized
that flows may not be independent and therefore more accurate estimates can be obtained using more
advanced methods (LeSage, Pace 2008, Chun 2008).

REGION : Volume 3, Number 2, 2016

R20 T. Oshan

'adjR2': adjR2,

'SSI': SSI,

'SRMSE': SRMSE,

'AIC': AIC }

data = pd.DataFrame(cols).set_index('model_name')
data[col_names]

Out[12]: R2 adjR2 AIC SRMSE SSI

model name

grav 0.885764 0.885718 20122.074349 0.607776 0.727358

prod 0.910156 0.910031 15841.253799 0.464520 0.740914

att 0.909355 0.909230 15982.313101 0.584048 0.752155

doub 0.943540 0.943335 9977.159141 0.379286 0.811852

From this table we can see that all of the fit statistics indicate a better model fit
as constraints are introduced. That is, the weakest model fit is consistently related to
the gravity model, with similarly increased model fit for the production-constrained and
attraction-constrained models, and finally, the best model fit is associated with the doubly
constrained model. We can also see that the R2 and adjusted R2 are very close, since
these models have a very similar number of explanatory variables, thereby resulting in
little or no penalization for model complexity.

We can also take a look at whether the power or exponential distance-decay specifica-
tion results in a better model fit. For simplicity, lets just take a look at the SRMSE for a
doubly constrained model.

In [13]: print 'SRMSE for exp distance-decay: ', doubly.SRMSE

pow_doubly = Doubly(flows, Origin, Destination, Dij, 'pow')
print 'SRMSE for exp distance-decay: ', pow_doubly.SRMSE

SRMSE for exp distance-decay: 0.37928618533

SRMSE for pow distance-decay: 0.277703139642

For this example, it looks like the power distance-decay specification results in a better
model fit.

3.5 Local models

The SpInt module also makes it possible to calibrate “local” models, which subset the
data by specific origins or destinations in order to investigate how spatial interaction
processes vary over space (Fotheringham, Brunsdon 1999). Below is an example of how to
get local parameters and local diagnostics for a gravity model subset by its origins. The
result is a dictionary of lists where the keys are the different sets of local values including
parameters, hypothesis testing diagnostics, and the previously reviewed fit statistics.

In [14]: gravity = Gravity(flows, Oi, Dj, Dij, 'pow')
local_gravity = gravity.local(Origin, np.unique(Origin))

Lets take a look at the local distance-decay parameters. The origin, destination and
distance-decay parameters are indexed sequentially through the design matrix starting
with 0 as you move through the origin attributes, through to the destination attributes,
and finally the distance-decay attribute. Therefore, for n variables, the distance-decay
parameters are always the n− 1th parameter, in this case of 3 variables: param2.

In [15]: print np.round(local_gravity['param2'], 4)

[-3.4028 -1.3583 -0.8307 -1.1492 -0.4781 -1.0095 -1.6758 -1.2156 -1.5397]

We can also take a look at the local R2.

In [16]: print np.round(local_gravity['pseudoR2'], 4)

[0.9665 0.9894 0.9893 0.5205 0.676 0.7298 0.6333 0.432 0.515]

REGION : Volume 3, Number 2, 2016

T. Oshan R21

Both the local distance-decay and the R2 show some variation. We can explore this
spatially, by mapping the local values. First, lets join the local values to a shapefile and
then plot the local distance-decay parameters

In [17]: #Join local values to census tracts

local_vals = pd.DataFrame({'betas': local_gravity['param2'],
'Dest':np.unique(Origin),
'pseudoR2': local_gravity['pseudoR2']})

local_vals = pd.merge(local_vals, austria_shp[['NUTS_ID', 'geometry']],
left_on='Dest', right_on='NUTS_ID')

local_vals = gp.GeoDataFrame(local_vals)

#Plot betas - use inverse so the most negative values are "higher"

fig = plt.figure()

ax = fig.add_subplot(111)

local_vals['inv_betas'] = (local_vals['betas']*-1)
local_vals.plot('inv_betas', cmap='Blues', ax=ax)

Out[17]: <matplotlib.axes. subplots.AxesSubplot at 0x115da9fd0>

Next, lets map the local R2 values. Above we can see a much stronger distance-decay
for the most westerly region. Below we can see that the model fit is stronger in the
north-west and decreases in the south-east. Using these patterns, we could then further
postulate why they arise or how we might be able to improve model fit.

In [18]: fig = plt.figure()

ax = fig.add_subplot(111)

local_vals.plot('pseudoR2', cmap='Greens', ax=ax)

Out[18]: <matplotlib.axes. subplots.AxesSubplot at 0x116f3b9d0>

REGION : Volume 3, Number 2, 2016

R22 T. Oshan

4 Further functionality

In addition to all of the features presented here, there are several other tools that exist
in SpInt or could be added. First, there are dispersion tests available in the dispersion
namespace of the SpInt module, which can be used to test whether or not the Poisson
equidispersion assumption is met. That is, that the conditional mean and variance are
equivalent, which can be unrealistic in many scenarios. If these tests indicate overdispersion
or underdispersion, then it might be appropriate to use a Quasi-Poisson model, which
relaxes the equidispersion assumption of the Poisson model. The resulting parameter
estimates are equivalent to the Poisson model, but the standard errors are typically larger
whenever equidispersion does not hold (Wedderburn 1974). The Quasi-Poisson model
specification can be carried out by setting Quasi=True in any of the spatial interaction
models introduced here. Alternatively, it might be more appropriate to change the
underlying probability model from Poisson to that of negative binomial or a zero-inflated
model. However, this has not yet been implemented in SpInt and therefore remains as
future work.

Another area of potential expansion is to accommodate several paradigms for incor-
porating spatial effects into spatial interaction models, such as competing destinations
(Fotheringham 1983), a spatial lag autoregressive model (LeSage, Pace 2008), or an
eigenvector spatial filter model (Chun 2008). These paradigms require code that computes
additional variables, more complex calibration techniques, and specialized representa-
tions of spatial relationships. Some solutions to the latter are available in the spintW
namespace of the weights module of PySAL. While there is still much work to be done
to develop a more robust set of open source spatial interaction modeling tools, SpInt
provides a starting point for which to build upon.

REGION : Volume 3, Number 2, 2016

T. Oshan R23

References

Akaike H (1974) A new look at the statistical model identification. Automatic Control,
IEEE Transactions on 19[6]: 716–723. CrossRef.

Cameron AC, Trivedi PK (2013) Regression Analysis of Count Data. Cambridge University
Press, New York. CrossRef.

Chun Y (2008) Modeling network autocorrelation within migration flows by eigenvector
spatial filtering. Journal of Geographical Systems 10[4]: 317–344. CrossRef.

Dennett A (2012) Estimating flows between geographical locations:‘get me started
in’spatial interaction modelling. Working Paper 184, Citeseer, UCL

Flowerdew R, Aitkin M (1982) A Method of Fitting the Gravity Model Based on the
Poisson Distribution. Journal of Regional Science 22[2]: 191–202. CrossRef.

Flowerdew R, Lovett A (1988) Fitting Constrained Poisson Regression Models to Interur-
ban Migration Flows. Geographical Analysis 20[4]: 297–307. CrossRef.

Fotheringham AS (1983) A new set of spatial-interaction models: the theory of competing
destinations. Environment and Planning A 15[1]: 15–36. CrossRef.

Fotheringham AS, Brunsdon C (1999) Local Forms of Spatial Analysis. Geographical
Analysis 31[4]: 340–358. CrossRef.

Fotheringham AS, O’Kelly ME (1989) Spatial Interaction Models:Formulations and
Applications. Kluwer Academic Publishers, London

Knudsen D, Fotheringham A (1986) Matrix comparison, Goodness-of-fit, and spatial
interaction modeling. International Regional Science Review 10: 127–147. CrossRef.

Kordi M, Kaiser C, Fotheringham AS (2012) A possible solution for the centroid-to-
centroid and intra-zonal trip length problems. International Conference on Geographic
Information Science, Avignon

Lenormand M, Huet S, Gargiulo F, Deffuant G (2012) A Universal Model of Commuting
Networks. PLoS ONE 7[10]: e45985. CrossRef.

LeSage JP, Pace RK (2008) Spatial Econometric Modeling Of Origin-Destination Flows.
Journal of Regional Science 48[5]: 941–967. CrossRef.

Masucci AP, Serras J, Johansson A, Batty M (2012) Gravity vs radiation model: on the
importance of scale and heterogeneity in commuting flows. arXiv:1206.5735 [physics] .
CrossRef.

McFadden D (1974) Conditional logit analysis of qualitative choice behavior. In: Zarembka
P (ed), Frontiers in Econometrics. Academic Press, New York, 105–142

Nelder JA, Wedderburn RWM (1972) Generalized Linear Models. Journal of the Royal
Statistical Society. Series A (General) 135[3]: 370–384. CrossRef.

Tiefelsdorf M, Boots B (1995) The specification of constrained interaction models using
the SPSS loglinear procedure. Geographical Systems 2: 21–38

Tsutsumi M, Tamesue K (2011) Intraregional Flow Problem in Spatial Econometric Model
for Origin-destination Flows. Procedia - Social and Behavioral Sciences 21: 184–192.
CrossRef.

Wedderburn RWM (1974) Quasi-Likelihood Functions, Generalized Linear Models, and
the Gauss-Newton Method. Biometrika 61[3]: 439–447. CrossRef.

Wilson AG (1971) A family of spatial interaction models, and associated developments.
Environment and Planning A 3: 1–32. CrossRef.

Yan XY, Zhao C, Fan Y, Di Z, Wang WX (2013) Universal Predictability of Mobility
Patterns in Cities. arXiv:1307.7502 [physics] . CrossRef.

REGION : Volume 3, Number 2, 2016

https://doi.org/10.1109/tac.1974.1100705
https://doi.org/10.1017/cbo9781139013567
https://doi.org/10.1007/s10109-008-0068-2
https://doi.org/10.1111/%28ISSN%291467-9787/issues
https://doi.org/10.1111/j.1538-4632.1988.tb00184.x
https://doi.org/10.1068/a150015
https://doi.org/10.1111/j.1538-4632.1999.tb00989.x
https://doi.org/10.1177/016001768601000203
https://doi.org/10.1371/journal.pone.0045985
https://doi.org/10.1111/j.1467-9787.2008.00573.x
https://doi.org/10.1103/physreve.88.022812
https://doi.org/10.2307/2344614
https://doi.org/10.1016/j.sbspro.2011.07.023
https://doi.org/10.2307/2334725
https://doi.org/10.1068/a030001
https://doi.org/10.1098/rsif.2014.0834

	Introduction
	The SpInt framework
	Modeling framework
	Calibration frameworkThis section has been slightly revised by the author on August 24, 2017 to remove potential ambiguities
	Model fit statistics

	An illustrative example: migration in Austria
	The data
	Calibrating the models
	Interpreting the parameters
	Assessing model fit
	Local models

	Further functionality

